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The Identification Zoo - Part 1 - sections 1, 2, and 3.

(These are notes to accompany the survey article of the same name in the
Journal of Economic Literature).

Well over two dozen types of identification appear in the econometrics
literature, including (in alphabetical order):

Bayesian identification, causal identification, essential identification,
eventual identification, exact identification, first order identification,
frequentist identification, generic identification, global identification,
identification arrangement, identification at infinity, identification by
construction, identification of bounds, ill-posed identification, irregular
identification, local identification, nearly-weak identification,
nonparametric identification, non-robust identification, nonstandard weak
identification, overidentification, parametric identification, partial
identification, point identification, sampling identification, semiparametric
identification, semi-strong identification, set identification, strong
identification, structural identification, thin-set identification,
underidentification, and weak identification.
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1. Introduction

Econometric identification really means just one thing:

Model parameters or features uniquely determined from the observable
population that data are drawn from.

Goals:

1. Provide a new general framework for characterizing identification
concepts

2. Define and summarize, with examples, the many different terms
associated with identification.

3. Show how these terms relate to each other.

4. Discuss concepts closely related to identification, e.g., observational
equivalence, normalizations, and the differences in identification between
structural models and randomization based reduced form (causal) models.
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Identifying Identification

Let θ be unknown parameters, vectors and/or functions.
θ is what we want to learn about, and hopefully, estimate.

Let φ be what is "knowable" about the data generating process (DGP)
from data.

Example: θ is the vector of coeffi cients of traditional linear supply and
demand curves. We can estimate linear reduced form regression
coeffi cients. The probability limits of those regression coeffi cients are φ.

Example: with independent, identically distributed (IID) data, the
distribution function of the data can be consistently estimated (the
Glivenko—Cantelli theorem). So with IID data the distribution function is
φ, and θ could include objects like structural model coeffi cients,
elasticities, and error distributions.

Example: in an ideal randomized control trial (RCT) experiment, φ is the
conditional distribution of the outcome given treatment, and θ could be
the average of the treatment effect over some population.
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The identification question: Given φ, which is what’s knowable about the
DGP, what can be learned about θ?

We say θ is identified, or more precisely, point identified, if given what φ
equals, we would know the value that θ equals.

θ is partially identified if we can say something about it’s value, but not
know it exactly, given φ.

Identification logically precedes estimation, inference and testing.

Note: Previous definitions of identification all made specific (varying)
assumptions about what φ was (Cowles, Sargan, Rubin,
Newey-McFadden). This paper generalizes those by allowing φ to vary by
context.

Lewbel (Boston College) Identification Zoo 2019 9 / 91



2. The Historical Roots of Identification

Before identification we need the notion of "ceteris paribus," that is,
holding other things equal.

Formal application of this concept to economics attributed to Alfred
Marshall (1890).

But earliest economic example is from William Petty (1662), "A Treatise
of Taxes and Contributions:"

"If a man can bring to London an ounce of Silver out of the Earth in Peru,
in the same time that he can produce a bushel of Corn, then one is the
natural price of the other; now if by reason of new and more easie Mines a
man can get two ounces of Silver as easily as formerly he did one, then
Corn will be as cheap at ten shillings the bushel, as it was before at five
shillings caeteris paribus."

This may be the earliest example of identification: a claimed causal effect
on prices.
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Philip Wright (1915) defines the classic identification problem in
economics, pointing out that what appeared to be an upward sloping
demand curve for pig iron was actually a supply curve, traced out by a
moving demand curve.

Sewall Wright (1925) (Philip’s son, a genetics statistician), invented causal
path diagrams, and used them to construct an instrumental variables
estimator, but likely for computational convenience instead of OLS, in a
model of all exogenous regressors.

Earliest known solution to an identification problem in econometrics (linear
regression using instrumental variables) is Philip Wright (1928), Appendix
B, applying his son’s methods.

Stock and Trebbi (2003) discuss whether Appendix B was actually written
by Philip or Sewall. By stylometric analysis (statistical analysis of literary
styles), they conclude that Philip Wright wrote Appendix B.
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Aside: Sewall Wright’s first application of causal path diagrams was to
determine the extent to which fur color in guinea pigs was determined by
developmental vs genetic factors. See, e.g., Pearl (2018).

So while the father looked at pig iron, the son studied actual pigs.

In addition to two different Wrights, two different Workings also worked on
the subject

Holbrook Working (1925) and, more relevantly, Elmer J. Working (1927).
Both wrote about statistical demand curves (Holbrook is the one for
whom the Working-Leser Engel curve is named).

Jan Tinbergen (1930) proposed indirect least squares estimation, but like
Sewall Wright, only for convenience not for solving identification.
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Others on identification with simultaneity: Trygve Haavelmo (1943),
Tjalling Koopmans (1949), Theodore W. Anderson and Herman Rubin
(1949), Koopmans and Olav Reiersøl (1950), Leonid Hurwicz (1950),
Koopmans, Rubin, and Roy B. Leipnik (1950), and the work of the Cowles
Foundation.

Related important early work: Abraham Wald (1950), Henri Theil (1953),
J. Denis Sargan (1958), Franklin Fisher (1966), and (using error
restrictions) Karl G. Jöreskog (1970).

Milton Friedman (1953) critiques Cowles foundation work - warns against
using different criteria to select models versus criteria to identify them.
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A different problem: Causal Modeling - Identifying a treatment effect.

Identification based on randomization: Jerzy Neyman (1923), David R.
Cox (1958), Donald B. Rubin (1978), many others.

In contrast to random selection, econometricians historically focused on
cases where selection (who is treated or observed) and outcomes are
correlated. Sources of correlation:

Simultaneity as in Trygve Haavelmo (1943). Pearl (2015) and Heckman
and Pinto (2015) credit Haavelmo as the first rigorous treatment of
causality in the context of structural econometric models.

Optimizing self selection as in Andrew D. Roy (1951).
Survivorship bias as in Abraham Wald (1943) - treatment assignment is
random, but sample attrition is correlated with outcomes (WW II planes
hit randomly, only ones hit in survivable spots return to be observed).
General models where selection and outcomes are correlated - James J.
Heckman (1978).
Formal use of Causal Diagrams: Pearl (1988)
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Another identification problem: identifying true linear regression
coeffi cients when regressors are measured with error.

Robert J. Adcock (1877, 1878), and Charles H. Kummell (1879):
measurement errors in "Deming regression", (popularized in stats lit by W.
Edwards Deming 1943). Is regression that mins least squares errors
measured perpendicular to the fitted line.

Corrado Gini (1921) gave an estimator for measurement errors in standard
linear regression.
Ragnar A. K. Frisch (1934) was first to discuss the issue in a way that
would now be recognized as identification.

Other early papers looking at measurement errors in regression include
Neyman (1937), Wald (1940), Koopmans (1937), Reiersøl (1945, 1950),
Roy C. Geary (1948), and James Durbin (1954).

Tamer (2010) credits Frisch (1934) as also being the first in the literature
to describe an example of partial or set identification.
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3. Point Identification

In modern terminology, the standard notion of identification is called point
identification (in other contexts, called global identification or frequentist
identification).

Some early formal definitions of identification, structure and observational
equivalence: Koopmans and Reiersøl (1950), Hurwicz (1950), Fisher
(1966) and Rothenberg (1971). See Chesher (2008) for additional
historical details on these classical identification concepts

In this survey I provide a general definition of point identification.

This new generalization maintains the intuition of existing classical
definitions while encompassing a larger class of models than previous
definitions
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3.1 Introduction to Point Identification

Recall θ is unknown parameters, vectors and/or functions - what we want
to learn about and hopefully, estimate.

Let φ be information that is assumed known, or that we could learn given
an unlimited amount of whatever type of data we have.

Examples of φ: distribution functions, conditional means, quantiles,
autocovariances, or true regression coeffi cients.

A model M imposes restrictions on the possible values φ could take on.

Simplest definition: Given the model M, parameter θ is point identified if
θ is uniquely determined from φ.
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Usually think of a model M as set of equations describing behavior.

More generally, a model corresponds to assumptions about and restrictions
on the DGP.

This includes assumptions about the behavior that generates the data, and
about how the data are collected and measured.

These assumptions in turn imply restrictions on φ and θ.

So, identification (even in purely experimental settings) always entails a
model.
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EXAMPLE: For scalars Y , X , and θ, model is that Y = X θ + e where
E
(
X 2
)
6= 0 and E (eX ) = 0.

Assume φ, what we can learn from data, includes second moments of
(Y ,X ).

Then θ is point identified: Have θ = E (XY ) /E
(
X 2
)
, which is a function

of φ.

EXAMPLE: X is a treatment indicator. Model says X is determined by
outcome of a coin flip.
Y is each individual’s outcome. Observe realizations of (X ,Y ),
independent across individuals.

Assume φ includes E (Y | X ). Let θ be the average treatment effect
(ATE).

Given the model, θ is identified by the difference in means
θ = E (Y | X = 1)− E (Y | X = 0).
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Both of the examples assume expectations of observed variables are
knowable, and so can be included in φ.

To justify the assumption, might appeal to statistical properties of
(observable) sample averages:

Unbiasedness or (given a weak law of large numbers) consistency.

The definition of identification is somewhat circular:

Start by assuming something, φ, is identified to end by determining if
something else, θ, is identified.

Assuming φ is knowable, or identified, must be justified by deeper
assumptions regarding the underlying DGP (Data Generating Process).
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Common DGP assumptions:

1. IID (Independently, Identically Distributed) observations of a vector W ,
with sample size n→ ∞.
With such data can consistently estimate the distribution of W by the
Glivenko—Cantelli theorem.
So reasonable to assume knowable φ is the distribution function of W .

2. Each observation of X is a value chosen by experiment.
Conditional on that value of X , randomly draw an observation of Y ,
(independent of other observations).
φ is the conditional distribution function of Y given X .
φ is only knowable for values of X that can be set by the experiment.

3. Stationary time series data: φ is variances and autocovariances
Not higher moments if they could be unstable over time.
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φ depends on the model.

Example: In dynamic panel data models, the Arellano and Bond (1991)
estimator is based on moments that are assumed knowable (can be
estimated from data) and equal zero in the population.

Blundell and Bond (1998) provides additional moments (functional form
information about the initial time period zero). Possible that θ is not
identified with Arellano and Bond moments, but becomes identified if the
model restricts φ by assuming Blundell and Bond moments also hold.

Example: experimental design, random assignment into treatment and
control groups. Still need a model for identification of treatment effects.
Typical model assumptions rule out measurement errors, sample attrition,
censoring, social interactions, and general equilibrium effects.
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Two types of DGP assumptions.

1. Assumptions regarding collection of data, e.g., selection, measurement
errors, and survey attrition.

2. Assumptions regarding generation of data, e.g., randomization or
statistical and behavioral assumptions.

Arellano (2003) refers to a set of behavioral assumptions that suffi ce for
identification as an identification arrangement.

Both types of assumptions determine the model M and what is knowable
φ, and hence determine what identification is possible.
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Identification logically precedes estimation. If θ is not point identified,
then estimators for θ having some desirable properties (like consistency)
will not exist.

However, identification does not by itself imply that estimators with any
particular desired properties exist, only that they might.

Example: Suppose θ = E (X ), and the DGP is such that θ is finite. With
iid observations of X , we can show that θ = E (X ) is identified.

We might desire an estimator for θ = E (X ) that converges in mean
square, but if X has suffi ciently thick tails, then no such estimator may
exist.

Ill-conditioned identification and non-robust identification (discussed later
in Section 8) are two situations where, despite being point identified, any
estimator of θ will have some undesirable properties.
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Machine Learning and Big Data

In some ways, machine learning and big data is (or should be) about
identification.

Varian (2014) says, "In this period of “big data,” it seems strange to focus
on sampling uncertainty, which tends to be small with large datasets, while
completely ignoring model uncertainty, which may be quite large."

In machine learning and big data, the observed sample is so large that it
can treated as if it were the population.

Identification deals precisely with what can be learned about the
relationships among variables given the population.
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3.2 Defining Point Identification

Recall φ is a set of constants and/or functions that we assume are known,
or knowable, given the DGP.

Examples: φ could be:
i. the distribution of Y ,X if IID observations.
ii. means and autocovariances in stationary data
iii. reduced form linear regression coeffi cients
iv. conditional distribution of Y given X where X values are set by
experiment.
v. transition probabilities, if W follows a martingale process.

Previous definitions of point identification in the literature each started
from a particular definition of φ. Examples:
— in Matzkin (2007, 2012), φ is a distribution function.
— In textbook linear supply and demand curves, φ is regression
coeffi cients.

This survey generalizes and encompasses previous definitions by allowing φ
to depend on context.
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Recall parameters θ are a set of unknown constants and/or functions that
characterize or summarize relevant features of a model.

θ can be anything we might want to estimate (θ will generally be
estimands, i.e., population values of estimators of objects that we want to
learn about).

Examples θ could include regression coeffi cients, the sign of an elasticity,
an average treatment effect, or an error distribution.

θ may also include "nuisance" parameters, which are defined as
parameters that are not of direct economic interest, but may be required
for identification and estimation of other objects that are of interest.
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Rough definitions of observational equivalence and of point
identification:

Two possible values θ and θ̃ are observationally equivalent if there exists a
value of φ that could imply either θ and θ̃.

θ is point identified if θ and θ̃ being observationally equivalent implies θ
and θ̃ are equal.

That is, θ is point identified if each possible value of φ implies a unique
value of θ.

The remainder of this subsection (which can be skipped if one’s primary
interest is in later sections) defines point identification a little more
precisely.

A more mathematically rigorous definition is provided in the Appendix of
the Identification Zoo survey.
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Definitions:

A model M is a set of functions or sets that satisfy some given
restrictions.

M can include restrictions on regression functions, distribution functions of
errors or other unobservables, utility functions, payoff matrices, or
information sets.

A model value m ∈ M is an element of M. So m is a particular value of
the functions, matrices, and sets that comprise the model.

Example: If Yi = g (Xi ) + ei , then M could be the set of possible
regression functions g and the set of possible joint distributions of the
regressor Xi and the error term ei for all i in the population.

The elements of M could be restricted: e.g., require linearity
g (Xi ) = a+ bXi . Other possible restrictions: var (ei ) finite,
E (ei | X ) = 0.
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Each model value m ∈ M generally implies a unique data generating
process (DGP). Exceptions are incoherent models - see section 4.

Assume each model value m ∈ M implies a particular value of φ and of θ.

Violations of this assumption can lead to incoherence or incompleteness -
see section 4.

There could be many values of m that imply the same φ or the same θ.

Define the structure s (φ, θ) to be the set of all m that yield both the
given values of φ and of θ.

Let Θ denote the set of all possible values that the model says θ could be.
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Two parameter values θ and θ̃ are defined to be observationally equivalent
if there exists a φ such that both s (φ, θ) and s

(
φ, θ̃
)
are not empty.

θ and θ̃ observationally equivalent means there exists a φ and model
values m and m̃ such that m implies the values φ and θ, and m̃ implies the
values φ and θ̃..

Definition of Identification:

The parameter θ is defined to be point identified (often just called
identified) if there do not exist any pairs of possible values θ and θ̃ in Θ
that are different but observationally equivalent.
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Let θ0 be the unknown true value of θ.

The particular value θ0 is point identified if θ0 not observationally
equivalent to any other θ in Θ.

But we don’t know which of the possible values of θ ∈ Θ is θ0.

So to ensure point identification, we generally require that no two
elements θ and θ̃ in the set Θ having θ 6= θ̃ be observationally equivalent.

Sometimes this condition is called global identification rather than point
identification, to explicitly say that θ0 is point identified no matter what
value in Θ turns out to be θ0.
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Showing identification in theory

We have defined point identification of parameters θ.

We say that the model is point identified when no pairs of model values m
and m̃ in M are observationally equivalent (treating m and m̃ as if they
were the parameters θ).

Identification of the model implies identification of any model parameters
θ.

We define the model M, so we could in theory
1. enumerate every m ∈ M,
2. list every φ and θ that is implied by each m, and thereby determine
every s (φ, θ)

3. check every value of every pair of structures s (φ, θ) and s
(

φ, θ̃
)
to see

if θ is point identified or not.

The diffi culty of proving identification in practice is in finding tractable
ways to accomplish this enumeration.
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Misspecification

Let φ0 be the value of φ that corresponds to the true DGP.

A model M is defined to be misspecified if there does not exist any model
value m ∈ M that yields φ0.

Misspecification means that what we can observe about the true DGP,
which is φ0, cannot satisfy the restrictions of the model M.

If our model M is not misspecified, then there exists a model value m0
which implies φ0.

What is the true model value? What is meant by truth of a model, since
models only approximate the real world?

We avoid that question, by just saying that, whatever the "true" model
value m0 is, it has the property of not conflicting with what we can
potentially observe or know, which is the true φ0.
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Additional Definitions

Ensuring point identification can require ruling out some potential values
of θ.

Local and generic identification are examples (are discussed in more detail
later)

Local identification of θ means that there exists a neighborhood of θ such
that, for all values θ̃ in this neighborhood (other than the value θ) θ is not
observationally equivalent to θ̃.

Generic identification means that set of values of θ in Θ that cannot be
point identified is a very small subset (formally, a measure zero subset) of
Θ.
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θ0 is said to be set identified (or partially identified) if there exist some
values of θ ∈ Θ that are not observationally equivalent to θ0.

The only time a parameter θ is not set identified is when all θ ∈ Θ are
observationally equivalent.

The identified set is the set of all values of θ ∈ Θ that are observationally
equivalent to θ0.

Point identification of θ0 is when the identified set contains only one
element, which is θ0.
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Parametric identification is where θ is a finite set of constants, and all
values of φ correspond to values of a finite set of constants.

Nonparametric identification is where θ consists of functions or infinite
sets.

Other cases are called semiparametric identification, e.g., θ includes both a
vector of constants and some functions.
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3.3 Examples and Classes of Point Identification

Example 1: a median.
M is set of possible distributions of continuous W with strictly
monotonically increasing distribution functions F (w).
DGP is IID draws of W . Each φ is an F function.
Each model value m happens to correspond to a unique value of φ.

Let θ be the median of W .
The structure s (F , θ) has one element if F (θ) = 1/2, is empty otherwise.
No pair θ 6= θ̃ are observationally equivalent, because F (θ) = 1/2 and
F
(

θ̃
)
= 1/2 implies θ = θ̃.

θ is identified because it’s the unique solution to F (θ) = 1/2. Knowing
F , we can determine θ.
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Example 2: Linear regression.
DGP is observations of Y ,X where Y is a scalar, X is a K−vector.
Observations of Y , X might not be IID.
φ is first and second moments of X and Y . Assumed finite, constant
across observations.
M is the set of joint distributions of e,X that satisfy Y = X ′θ + e,
E (Xe) = 0 for an error term e.
s (φ, θ) is nonempty when moments comprising φ satisfy
E [X (Y − X ′θ)] = 0 for the given θ.

If restrict M by assuming E (XX ′) is nonsingular, then θ identified by
θ = E (XX ′)−1 E (XY ).
Otherwise θ̃ = E (XX ′)− E (XY ) for different pseudoinverses E (XX ′)−

are observationally equivalent.

Identification is parametric: θ and φ are finite vectors.
Would be semiparametric if, e.g., assumed φ was distribution of Y ,X
under IID data, and parameter set included the distribution function of e.
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Example 3: treatment.

DGP: Assign treatment T = 0 or T = 1, generate an outcome Y .
Y ,T independent across individuals. φ is distribution of Y ,T .

Rubin (1974) causal notation: Random Y (t) is the outcome an individual
would have if assigned T = t.
θ is the average treatment effect (ATE), defined by
θ = E (Y (1)− Y (0)).
M is the set of all possible joint distributions of Y (1), Y (0), and T .
A restriction on M: Rosenbaum and Rubin’s (1983) assumption that
(Y (1) ,Y (0)) is independent of T .
Rubin (1990) calls this unconfoundedness, is equivalent to random
assignment of treatment.

θ is identified because unconfoundedness implies that
θ = E (Y | T = 1)− E (Y | T = 0).
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Heckman, Ichimura, and Todd (1998): a weaker suffi cient condition for
identification of θ is the mean unconfoundedness assumption that
E (Y (t) | T ) = E (Y (t)).

Without some form of unconfoundedness, θ might not equal
E (Y | T = 1)− E (Y | T = 0).

More relevantly for identification, without unconfoundedness, different
joint distributions of Y (1), Y (0), and T (i.e., different model values m)
might yield the same joint distribution φ, but have different values for θ.

Those different θ values would then be observationally equivalent to each
other, and so we would not have point identification.

Above can all be generalized to allow for covariates. The key for
identification is not a closed form expression like
E (Y | T = 1)− E (Y | T = 0) for θ. The key is a unique value of θ for
each possible φ.
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Example 4: linear supply and demand.

In each time period, demand Y = bX + cZ + U and supply Y = aX + ε.
Y quantity, X price, Z income, U, ε mean zero errors, independent of Z .
Each model value m consists of a particular joint distribution of Z , U, and
ε in every time period.
These distributions could change over time.

φ could be vector (φ1, φ2) of reduced form coeffi cients Y = φ1Z + V1
and X = φ2Z + V2 where V1 and V2 are mean zero, independent of Z .
Solving for the reduced form coeffi cients: φ1 = ac/ (a− b) and
φ2 = c/ (a− b).
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Demand Y = bX + cZ + U and Supply Y = aX + ε.
Let θ be a, the supply price coeffi cient.

A given structure s (φ, θ) contains all model values m that satisfy θ = a,
φ1 = ac/ (a− b), and φ2 = c/ (a− b).

If c 6= 0, then φ1/φ2 = a, so s (φ, θ) is empty if c 6= 0 and φ1/φ2 6= θ.
Otherwise, s (φ, θ) contains many elements m, because there are many
different possible distributions of Z , U, and ε that can go with each such
φ and θ.

θ is not identified unless we add the restriction c 6= 0 which implies that
φ2 6= 0. Otherwise any θ and θ̃ will be observationally equivalent when
φ = (0, 0).
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Example 5: latent error distribution.

DGP is IID (Y ,X ). φ is the joint distribution of Y ,X .
M is the set of joint distributions of X ,U satisfying: X is continuous,
U ⊥ X , and Y = I (X + U > 0).
θ = FU (u), the distribution function of U.

For any value x that X can take on, we have E (Y | X = x) =
Pr (X + U > 0 | X = x) = Pr (x + U > 0) = 1− Pr (U ≤ −x)
= 1− FU (−x).

So function FU is nonparametrically identified; it can be recovered from
E (Y | X = x).
But FU (u) is only identified for values of u that are in the support of −X .

This is the logic behind the identification of Lewbel’s (2000) special
regressor estimator (see section 6.4 later).
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Many identification arguments begin with one of three cases:
1. φ is a set of reduced form regression coeffi cients
2. φ is a data distribution, or
3. φ is the maximizer of some function.

These starting points are common enough to deserve names, so I will call
these classes
1. Wright-Cowles identification,
2. Distribution Based identification, and
3. Extremum Based identification.
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Wright-Cowles Identification

Associated with Philip and Sewall Wright and with Cowles foundation,
Concerning linear systems like supply and demand equations.

Y a vector of endogenous variables
X a vector of exogenous variables (regressors and instruments).

φ is the matrix of population reduced form linear regression coeffi cients,
i.e., the coeffi cients obtained from a linear projection of Y onto X .

M is structural linear equations.
Restrictions defining M include exclusion assumptions
e.g., an element of X that is known to be in the demand equation, but is
excluded from the supply equation, and therefore serves as an instrument
for price in the demand equation.
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θ is a set of structural model coeffi cients we wish to identify.
Examples: θ could be the coeffi cients of one equation, e.g., the demand
equation.
θ could be all the coeffi cients in the structural model
θ could just be a single price coeffi cient.
θ could be some function of coeffi cients, like an elasticity.

For each possible φ, θ, a structure s (φ, θ) is all model values m having
structural coeffi cients equal θ and reduced form coeffi cients equal φ.

Identification of θ requires that there can’t be any θ̃ 6= θ that has the
same matrix of reduced form coeffi cients φ that θ could have.

Note there could be multiple values of φ consistent with any given θ.
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A convenient feature of Wright-Cowles identification:
It can be applied to time series, panel, or other DGP’s with dependence
across observations.
Only require that reduced form linear regression coeffi cients have some
well defined limiting value φ.

Identification of linear models sometimes combines restrictions on
structural coeffi cients with restrictions on cov(errors |X ).
Then need to expand definition of φ to include both reduced form
coeffi cients and cov(errors |X ).
Assumes cov(errors |X ) is knowable.

When φ includes these error covariances, Identification is then sometimes
possible without exclusion based instruments. Examples: LISREL model of
Jöreskog (1970), heteroskedasticity based identification of Lewbel (2012,
2018).
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Distribution Based Identification

Equivalent to the definition of identification given by Matzkin (2007,
2012). Also see Hsiao (1983).

Assumes φ is the distribution function of an observable random vector Y
(or the conditional distribution function of Y given a vector X ).

Definition derived from Koopmans and Reiersøl (1950), Hurwicz (1950),
Fisher (1966), and Rothenberg (1971).

In these earlier references, model implied φ was in a known parametric
family, so φ could be estimated by maximum likelihood.

Suitable for IID data, where φ would be nonparametrically knowable by
the Glivenko-Cantelli theorem.

Could also apply to non-IID DGP’s, if the distribution is suffi ciently
parameterized.

Lewbel (Boston College) Identification Zoo 2019 49 / 91



θ could be:
parameters of a parameterized distribution function
features of φ like moments or quantiles, possibly conditional.
constants or functions describing a behavioral or treatment model
generating data drawn from the distribution φ.

θ is point identified if it’s uniquely determined from knowing the
distribution function φ.

Note the difference:

Distribution based identification assumes an entire distribution function is
knowable.

Wright-Cowles just assumes features of the first and second moments of
data are knowable.
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Extremum Based Identification:

Following Sargan (1959, 1983), Amemiya (1985), and Newey and
McFadden (1994).

Extremum estimators maximize an objective function, such as GMM,
MLE, or least squares.

In Extremum based identification, each model value m is associated with
the value of a function G .

φ is set of values of vectors or functions ζ that maximize G (ζ).

θ is identified if, for every value of G allowed by the model, there’s only a
single value of θ that corresponds to any of the values of ζ that maximize
G (ζ).
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Connection to extremum estimation:

Consider example of an extremum estimator that maximizes an average
with IID data:
Assume φ̂ equals the set of all ζ that maximize ∑n

i=1 g (Wi , ζ) /n
where IID Wi are observations of an observable data vector,
and g is a known function.

e.g. if −g (Wi , ζ) is a squared error term this would be a least squares
estimator.

if g is the probability density of Wi , this would be a maximum likelihood
estimator.

Would then define G by G (ζ) = E (g (Wi , ζ)).

More generally G would be the probability limit of the extremum objective
function.
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Suppose G is, as above, the probability limit of the objective function of a
given extremum estimator.

A standard assumption for proving consistency of extremum estimators is
to assume G (ζ) has a unique maximum ζ0, and that θ0 equals a known
function of (or subset of) ζ0.

See, e.g., Section 2 of Newey and McFadden (1994).

This is a suffi cient condition for extremum based identification.
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Wright-Cowles identification can be a special case of, extremum based
identification, by defining G to be an appropriate least squares objective
function.

In parametric models, Distribution based identification can also often be
recast as extremum based identification, by defining the objective function
G to be a likelihood function.

Extremum based identification can be particularly convenient for
complicated DGP’s, since it only requires that maximizing values of a
given objective function G be knowable.
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In Extremum based identification nothing about the DGP is assumed to be
known other than the maximizing values of the objective function G .

An advantage: that’s the identification one needs to establish asymptotic
properties of any given extremum based estimator.

A drawback: Doesn’t say anything about whether θ could have been
identified from other features of the underlying DGP that might be
knowable in practice.
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Example: DGP is IID observations of a bounded scalar W and
θ0 = E (W ). Applying Distribution based identification, have that θ0 is
identified.

But consider Extremum based identification with
G (ζ) = −E

[
(W − |ζ|)2

]
.

Is maxed by φ = {θ0,−θ0}. So θ0 and −θ0 are observationally equivalent,
and θ is not identified, using this G .

Here G failed to account for other info that would be knowable given IID
data.

Failure of extremum based identification can be due either to more
fundamental nonidentification in the DGP, or due to the particular choice
of objective function.
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This problem typically does not apply to Distribution based parametric
identification. Since (given regularity) conditions, the likelihood function
contains all of the info about parameters that is available in the
population.

However, this issue can arise in Wright-Cowles identification.
By defining φ just in terms first and second moments, Wright-Cowles
ignores potential additional info in the DGP.

Example: Lewbel (1997b) uses some information in third moments to
obtain identification in models containing mismeasured covariates without
instruments (other examples in section 3.7).

Wright-Cowles, Distribution, and Extremum based identification are all
examples of point identification. They differ only in what they regard as
the knowable information φ in the DGP.
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3.4 Proving Point Identification

In the earlier examples, identification was proved "by construction:"
Writing θ directly as a function of φ:

example 1: θ = F−1 (1/2)

example 2: θ = E (XX ′)−1 E (XY )

example 3: θ = E (Y | X = 1)− E (Y | X = 0)

example 5: θ = FU |Z (u) = 1− E (Y | X = −u).
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Typical (especially in the statistics literature) is to directly prove
consistency. Construct an estimator θ̂ and prove that, under the assumed
DGP, θ̂ is consistent.

This is a special case of identification by construction, where the
construction is θ = plim θ̂.

In example 2 above θ̂ would be the standard ordinary least squares
regression coeffi cient. Others are similar.

Caution: Some proofs of consistency either implicitly or explicitly assume
identification. E.g. Theorem 2.1 of Newey and McFadden (1994) proves
the consistency of extremum estimators. But it includes extremum based
identification as one of its assumptions.
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An example of proving identification by proving consistency:

DGP is IID observations of a vector W .
F (w) is the distribution function of W , evaluated at the value w .
The empirical distribution function is F̂ (w) = ∑n

i=1 I (Wi ≤ w) /n
F̂ estimates the probability that W ≤ w by counting observations of Wi

that are less than w .

The Glivenko—Cantelli theorem: If Wi are IID, F̂ (w) is a uniformly
consistent estimator of F (w).

This gives identification of the function F (w) by construction, taking the
probability limit of F̂ (w)

This justifies the starting assumption with IID data that what is knowable,
φ, is the distribution function of W .
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1. ’By construction’is the commonest way to prove identification.

Other methods are:

2. Proving true θ is the unique solution to an optimization problem.
Example: maximum likelihood with a concave population objective
function (e.g., probit, see Haberman 1974).

3. Applying characterizations of observational equivalence in some classes
of models. See Roehrig (1988) and Matzkin (2008).

4. Showing the true θ is the unique fixed point in a contraction mapping
based on M.
Example: The BLP model (Berry, Levinsohn, and Pakes 1995) doesn’t
quite do this, but a contraction mapping is used to prove that a necessary
condition for identification, uniqueness in the error inversion step, holds.
Example: Pastorello, Patilea, and Renault (2003) use a fixed point
Extremum based identification assumption for their proposed latent
backfitting estimator.
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For many examples of applying these methods to prove identification, see
Matzkin (2005, 2007, 2012).

In some cases, it is possible to empirically test for identification.

These are generally tests of extremum based identification, based on the
behavior of associated extremum based estimators.

Examples: Cragg and Donald (1993), Wright (2003), Inoue and Rossi
(2011), Bravo, Escanciano, and Otsu (2012), and Arellano, Hansen, and
Sentana (2012).
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Point identification can be defined without reference to any data at all!

Example: Model M consists of (regular) utility functions maximized under
a linear budget constraint.

φ = Demand functions, θ = Indifference curves.

Revealed preference theory of Samuelson (1938,1948), Houthakker (1950),
and Mas-Colell (1978) shows point identification of θ.

Note again the sense in whch definitions of identification can be a bit
circular or recursive: Start by assuming something is identified (demand
functions) to show that something else is identified (indifference curves),
given the revealed preference assumptions.

A separate question would then be when or whether demand functions can
be identified from observed data.

Lewbel (Boston College) Identification Zoo 2019 63 / 91



3.5 Common Reasons for Failure of Point Identification

Typical (somewhat overlapping) reasons identification fails or is diffi cult to
attain:
1. model incompleteness,
2. perfect collinearity or dependence,
3. nonlinearity,
4. simultaneity,
5. endogeneity,
6. unobservability.

1. Incompleteness: variable relationships not fully specified (more about
completeness and coherence later).

Example: games having multiple equilibria, without or unknown
equilibrium selection rule.
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2. Perfect collinearity.
Let Yi = a+ bXi + cZi + ei . If Xi is linear in Zi , can’t identify a, b, c .

Perfect dependence:
Can’t identify the function g (X ,Z ) = E (Y | X ,Z ) if X = h (Z ).

3. Nonlinearity can cause multiple solutions:
Example: Y = (X − θ)2 + e with E (e) = 0.

Then true θ0 satisfies E
(
Y − (X − θ)2

)
= 0

True θ0 is one of two roots of E
(
Y − X 2

)
+ 2E (X ) θ − θ2 = 0.

Identification needs more info, e.g., maybe knowing sign of θ.
Without more data, θ is locally identified.
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4. Simultaneity: X and Y being determined jointly or simultaneously

Classical Cowles foundation analysis of identification.

supply curve: Y = aX + ε
demand curve Y = bX + cZ + U

Y is log quantity, X is log price, Z is log income, errors E [(ε,U) | Z ] = 0.

For simplicity, assume all variables mean zero, so no constant terms.
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supply: Y = aX + ε demand: Y = bX + cZ + U

Moments we have in φ are related by:
E (ZY ) = E (ZX ) a
E (ZY ) = E (ZX ) b+ E (ZZ ) c

a is identified by a = E (ZY ) /E (ZX ) if E (ZX ) 6= 0.
But for b and c all we have is E (ZX ) (a− b) = E (ZZ ) c

Equate supply and demand to get E (ZX ) = E (ZZ ) c/ (a− b).

a is identified by a = E (ZY ) /E (ZX ) if E (ZX ) 6= 0.
b and c are not identified since demand curve is observationally equivalent
to Y = b̃X + c̃Z + Ũ where, for any constant λ, b̃ = λb+ (1− λ) a,
c̃ = λc , and Ũ = λU + (1− λ) ε.
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Graphical interpretation:
variation in instrument Z moves the demand curve
intersection of the two curves at varying Z values trace out the supply
slope.
have no information about demand slope
Essentially, only see one point on the demand curve.

Note: Randomization is a useful source of identification, primarily because
it prevents simultaneity.
Y and X can’t be determined jointly if X is determined by a random
process that is independent of Y .

Lewbel (Boston College) Identification Zoo 2019 68 / 91



5. Endogeneity is the general problem of regressors being correlated with
errors.

Simultaneity is one source of endogeneity.

Endogeneity can arise in other ways as well:.
Measurement errors
Sample selection
Correlated heterogeneity

example: Production function error is an unobserved factor of
production such as entrepreneurship, may correlate with other factors of
production.

example: Wage equation error is an individual’s ability or drive,
correlates with other factors that determine wages, like education.
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6. Unobservability.

Many concepts we would like to estimate are unobservable.
Counterfactuals: what an untreated individual’s outcome would have been
had they been treated.
Other Examples: random utility parameters, dynamic model state
variables, production effi ciency frontiers.

Other concepts in theory observable, but diffi cult to measure.
Examples: individual’s bargaining power within a household.
individuals information set in a game or a dynamic optimization
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Must combine assumptions and observable data to identify functions of
unobservable (or unobserved) variables.

Examples:

Point identify compensating and equivalent variation to bound (set
identify) unobserved true consumer surplus.

Assume unconfoundedness to overcome unobservability of counterfactuals
in identification of ATE (Average Treatment Effects).
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3.6 Control Variables

"I controlled for that."

Common response to a potential identification question (particularly in
simple regressions and in Difference-in-Difference analyses). What does it
mean?

Let θ be a parameter measuring the effect of one variable X on another
variable Y .

The effect identified by the model may not equal the desired θ because of
other so-called "confounding" connections between X and Y .

Adding a control is including another variable Z in the model to fix the
problem.
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The idea: Z explains the confounding relationship between X and Y .

By putting Z in the model we statistically hold Z fixed, and thereby
"control" for the alternative, unintended connection between X and Y .

Fixing Z is assumed to maintain the ceteris paribus condition.

Example: X physical exercise, Y is weight gain. A control Z would be
participant’s age.

Example: "Parallel trends" assumption in difference-in-difference models.
Assumes time and group dummies Z control for all confounding
relationships between X and Y other than the desired causal treatment
effect.
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Including a covariate Z does NOT always fix the identification problem.
Can make the problem worse! Two reasons why:

1. Functional form

Unless we have a structural model of how Z affects Y , should include Z in
the model in a highly flexible (ideally nonparametric) way. Otherwise,
model might be misspecified.

Including controls additively and linearly (i.e., as additional regressors in a
linear regression) is a strong structural modeling assumption, even if the
model is causal like LATE or difference-in-difference. Exception is
"saturated" model.
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Second, bigger reason why Including a covariate Z does NOT always fix
the identification problem. Can make the problem worse:

2. Endogeneity

If Z is endogenous, fixing the omitted variable problem introduces
endogeneity.

In the causal diagram literature have "confounders" and "colliders." See,
e.g., Pearl (2000, 2009).

When Z is confounder, including it controls the problem.

When Z is a collider, including it can ruin identification of the causal
effect of X on Y .
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Example: A wage equation

Y is wage, X is a gender dummy. Looking to identify, e.g., wage
discrimination.

Confounding problem: women may choose different occupations from
men, and occupation affects wages.

Should we include occupation Z in the model as a control?

Z is endogenous: wages that are offered to men and to women affect their
occupation choice.

Z is a collider. Unless we have a proper instrument for Z , the coeffi cients
on both X and Z will still be biased (inconsistent) in general.
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Same problem can affect Difference-in-Difference models:

The dummies and other covariates in these models are supposed to be
controls for all sorts of potentially endogenous group and time related
effects.

But if any of these dummies or covariates are colliders (or highly correlate
with colliders), the causal interpretation of the difference-in-difference
estimand may be lost.

These issues with potential controls are closely related to the well known
Berkson (1946) and Simpson (1951) paradoxes.

Bottom line: either implicit or explicit considerations of underlying
structure is needed to convincingly argue that covariates intended to serve
as controls will actually function as they are intended.
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3.7 Identification by Functional Form

Definition: Identification based on assuming some functions in the model
have specific parametric or semiparametric forms.

Example: Heckman (1978) selection model: Y = (b′X + U)D and
D = I (a′X + ε ≥ 0)
Observe Y , D, and a vector X . Unobserved errors U and ε are
independent of X .

b is identified if have excusions (some elements of vector b known to equal
zero). Alternatively, can be identified by known functional form of U and ε
jointly normal.

Actually, even without exclusions, error normality is much stronger than
needed. Just nonlinearity in D is almost suffi cient. See Dong (2012) and
Escanciano, Jacho-Chávez, and Lewbel (2016).
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Nonlinearity can help identification by functional form. Example:
supply curve: Y = dX 2 + aX + ε
demand curve Y = bX + cZ + U
errors E [(ε,U) | Z ] = 0.

We still have no exogenous regressors in the supply curve to use as
instruments for the demand curve.

We only have the single exogenous Z in the demand curve and two
coeffi cients (that of X and X 2) to identify in the supply curve.

Despite the apparent shortage of instruments, both equations are
identified! How?
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supply: Y = dX 2 + aX + ε, demand: Y = bX + cZ + U

Why are both identified now? Nonlinearity.

To see identification here equate supply and demand to get
dX 2 + (a− b)X + cZ + ε− U = 0,
solving for X yields the reduced form equation:

X =
(
b− a±

(
(b− a)2 − 4 (cZ + ε− U) d

)1/2
)

/2d .

X is linear in (Z + γ)1/2 for some γ

X 2 is linear in Z and (Z + γ)1/2.
Assume Z 1/2 is correlated with (Z + γ)1/2

Then Z 1/2 and Z are usable instruments for both equations.
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One can also see the identification graphically. Nonlinear supply means as
Z shifts the demand curve, one sees intersections of supply at different
points along the demand curve, tracing out the slope of the demand curve.

Formal proof of identification depends on showing that the equations
E
(
Y − dX 2 − aX | Z = z

)
= 0

E (Y − bX − cZ | Z = z) = 0.
for all z on the support of Z can be uniquely solved for a, b, c, and d . This
requires that the model contain a few mild additional assumptions.
Example: identification would fail if Z only took the values zero and one.
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Idea of identifying linear coeffi cients by exploiting nonlinearity elsewhere
greatly generalizes.

Example: model Y = h (Z ′b, g (Z )) + ε and X = g (Z ) + U
Functions h and g are unknown
joint distribution of ε and U are unknown, independent of Z .

Models like these can arise with endogenous regressors or with sample
selection.

Escanciano, Jacho-Chávez, and Lewbel (2016) show that the coeffi cients b
and the functions h and g can generally be identified in this model.

Key requirement is linear Z ′b and nonlinear g .
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Identification by functional form, another example:

Y = a+ bX + cZ + U

Assume X is endogenous (correlated with U) and have no exclusion
assumption (no outside instruments). Lewbel (2012, 2018) exploits
heteroskedasticity instead of nonlinearity in the X equation to identify the
model.

Regress X = γ+ δZ + e, then let R =
(
Z − Z

)
ê. Under some

heteroskedasticity assumptions, R is a valid instrument for X .

Example assumptions that work: X is mismeasured, so U contains both
model and measurement error. True model error in the Y equation is
homoskedastic, e is heteroskedastic. This also works for some kinds of
factor models.
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Measurement error Identification by functional form:

Let Y = a+ bX + U where X has classical measurement error.
Assume true X independent of model and measurement errors.

Reiersøl (1950) showed a and b are identified as long as either the true X
or the true errors are NOT normal. Normality is the worst possible
functional form for identification with measurement error!

Lewbel (1997b) shows, if measurement error is symmetric and true X is
asymmetric, then

(
X − X

)2
is a valid instrument for X . Empirical

example is regression of patent counts on R&D expenditures.

Schennach and Hu (2013) show Reiersøl extends to identify
Y = g (X ) + U with mismeasured X for any function g except for a few
specific functional forms of g and of the error distributions. In these
models independence of the true error has strong identifying power.

Lewbel (Boston College) Identification Zoo 2019 84 / 91



Identification by functional form or by constructed instruments depends on
relatively strong modeling assumptions.

When available, better to use ’true’outside instruments (based on theory
based exclusions).

Causal inference proponents go further, accepting only randomization as a
valid source of exogenous variation.

Lewbel (Boston College) Identification Zoo 2019 85 / 91



Good use of constructed instruments or identification by functional form?
For testing and robustness.

In practice, one often can’t be sure if assumptions needed for outside
instrument validity (exclusions) are satisfied.

Even with randomization, assumptions for validity, like no measurement
errors correlated with treatment, can be violated (see section 5).

For testing: can combine functional form based moments (e.g.
constructed instruments) with moments based on "true" instruments to
get overidentification.

Use the results for instrument validity testing, robustness checks, and
effi ciency.
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Example: Y = a+ bX + cZ + U

Z is exogenous, X is endogenous, outside variable W a proposed
instrument for X , and R =

(
Z − Z

)
ê is Lewbel’s (2012)

heteroskedasticity based constructed instrument.

2SLS using both R and W as instruments for X is overidentified - test
jointly for validity of the instruments by Sargan (1958) and Hansen (1982)
J-test.

If rejected, then model misspecified or an instrument is invalid. Else have
increased confidence in both W and R. Both might then be used in
estimation to maximize effi ciency.

Or just check robustness of estimated effects to various possible true and
constructed instruments.

More confidence that estimated effects are reliable if different sources of
identification (randomization, exclusions, constructed moments) all agree.

Lewbel (Boston College) Identification Zoo 2019 87 / 91



3.8 Over, Under, and Exact Identification, Rank and Order
conditions.

Models often contain sets of equalities (usually expectations) involving θ,
e.g., moment conditions like E [g (W , θ)] = 0,
where W is data and g are known functions.

Many estimators are based on moment equalities: OLS, 2SLS, GMM, and
first order conditions from extremum estimators like MLE score functions.

Suppose identification of a vector θ is based on equalities.
θ is exactly identified if removing any one equality loses identification,
θ is overidentified if θ can still be identified after removing one or more
equalities.
θ is underidentified if don’t have enough equalities to identify θ.
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For θ a J−vector, usually need J equations to exactly identify θ.
Number of equations equal number of unknowns is the order condition for
identification.

In linear models, identification also requires a rank condition on the matrix
that θ multiplies.

General rank conditions for nonlinear models exist, based on the rank of
relevant Jacobian matrices. See Fisher (1959, 1966), Rothenberg (1971),
Sargan (1983), Bekker and Wansbeek (2001), and section 8.1 later on
local identification.

Often satisfying the order condition may suffi ce for generic identification
(see section 8.2 later).
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When parameters are overidentified, can usually test validity of the
moments used for identification.

Intuitively, could estimate the J vector θ using different combinations of J
moments, and test if the resulting estimates of θ all equal each other.

In practice, more powerful tests exploit all the moments simultaneously.
E.g. Sargan (1958) and Hansen (1982) J-test.

Arellano, Hansen, and Sentana (2012) discuss testing for
underidentification.

Terminology defined in this subsection is generally from the Cowles
foundation era, e.g., the term ’order condition’dates back at least to
Koopmans (1949).

Rank and order condition terminology assumes θ a vector, not a function.
Chen and Santos (2015) extend to define semiparametric local
overidentification.
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End of Part 1

Part 2 will have sections:

4. Coherence, Completeness and Reduced Forms

5. Causal Reduced Form vs Structural Model Identification

Part 3 will have sections:

6. Identification of Functions and Sets

7. Limited Forms of Identification

8. Identification Concepts that Affect Inference

9. Conclusions
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