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The Ildentification Zoo - Part 2 - sections 4 and 5.

(These are notes to accompany the survey article of the same name in the
Journal of Economic Literature).

Well over two dozen types of identification appear in the econometrics
literature, including (in alphabetical order):

Bayesian identification, causal identification, essential identification,
eventual identification, exact identification, first order identification,
frequentist identification, generic identification, global identification,
identification arrangement, identification at infinity, identification by
construction, identification of bounds, ill-posed identification, irregular
identification, local identification, nearly-weak identification,
nonparametric identification, non-robust identification, nonstandard weak
identification, overidentification, parametric identification, partial
identification, point identification, sampling identification, semiparametric
identification, semi-strong identification, set identification, strong
identification, structural identification, thin-set identification,

underidentification, and weak identification.
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1. Introduction
Econometric identification really means just one thing:

Model parameters or features uniquely determined from the observable
population that data are drawn from.

Goals:

1. Provide a new general framework for characterizing identification
concepts

2. Define and summarize, with examples, the many different terms
associated with identification.

3. Show how these terms relate to each other.

4. Discuss concepts closely related to identification, e.g., observational
equivalence, normalizations, and the differences in identification between
structural models and randomization based reduced form (causal) models.
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4. Coherence, Completeness, and Reduced Forms

Often ignored in practice, but analyzing coherence and completeness
logically precedes the study of identification.

Most point identification proofs (e.g., all of Matzkin's 2005, 2007, 2012
identification survey examples) assume a unique reduced form, and so

implicitly or explicitly assume both coherence and completeness.

In contrast, incompleteness often results in 6 only being set identified.
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Completeness here extends the concept of statistical completeness.
Statistical completeness in parametric models is associated with sufficient
statistics, and is discussed in Newey and Powell (2003) for identification of
nonparametric IV models.

Let Y € (), be a vector of endogenous variables.

Let V € Q), be a set of observables and unobservables that determine Y.

V' can contain unknown parameters, exogenous observed covariates, and
error terms.
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Assume the model M is Y = H(Y, V)
This means each model value m € M implies a DGP in which V and Y
satisfy Y = H(Y, V).

M is coherent if for each v € (), there exists at least one y € (),
satisfying y = H(y, v).
M is complete if for each v € (), there exists at most one y € (),
satisfying y = H(y, v).

Having both coherence and completeness guarantees existence of a unique
reduced form y = G(v), defined by G(v) = H[G(v), v].

Note: above terminology is due to Tamer (2003).

Gourieroux, Laffont, and Monfort (1980) defined the model to be coherent
if, in Tamer's terminology, the model is both coherent and complete.
Heckman (1978) referred to the combination of coherence and
completeness, as the principal assumption and as conditions for existence
of the model.
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Tamer (2003) shows incoherent or incomplete models can arise in
simultaneous games, e.g., the industry entry game of Bresnahan and Reiss
(1991).

Here incoherency corresponds to the game having no Nash equilibrium
Incompleteness to the case of multiple equilibria.

Aradillas-Lopez (2005) removes the incompleteness in these games by
showing that a unique Nash equilibrium exists when the player’'s have some
private information.

Coherency and completeness in limiting dependent variable systems of

equation are studied by Blundell and Smith (1994), Dagenais (1997), and
Lewbel (2007).
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Consider the simple, harmless looking model
Y1:/(Y2—|-U120). Y, =0Y:+ Us

where [ is the indicator function, 6 is a coefficient, U; and U, are
unobserved error terms, and V = (0, U, U»).

These could be game reaction functions, where player one makes a
discrete choice Y; (such as whether to enter a market), and player two
makes a continuous decision Y2 (such as the quantity to produce).

Estimate this model by standard methods, e.g., maximum likelihood
assuming U; and U, normal? Big mistake!

Substituting out Y, get Y1 = 1(6Y1 + Uy + U, > 0).

If —6 < U; 4+ U, < 0 then both Y1 = 0 and Y; = 1 satisfy the model:
incomplete.

If 0 < U; + Uy < —0 then neither Y1 = 0 nor Y; = 1 satisfy the model:
incoherent.

Lewbel (Boston College) Identification Zoo 2019 12 / 70



Model is coherent and complete iff 8 = 0 or if U; + U is constrained to
not lie between zero and —0.

0 = 0 makes this system triangular, not fully simultaneous.

Lewbel (2007) shows simultaneous systems containing a dummy
endogenous variable generally need to either be triangular or to restrict the
supports of the error terms to be coherent and complete.

But the direction of triangularity can vary, e.g., are coherent and complete
if
Y1:/(DY2—|-U120), YQZ(].—D)QY1+U2

where D is binary (indicates who moves first in the game).
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Typically, incoherence arises in fully simultaneous models but not in
triangular systems.

Incoherence can often indicate model misspecification: for some v, there is
no possible y, whereas in reality some y is observed.

Incompleteness is a model that is not fully specified. For example,
structural restrictions that take the form of inequalities rather than
equalities will often be incomplete, since they can imply multiple possible
values of y for the same v.

Parameters of incoherent or incomplete models can sometimes be point

identified and estimated (see Tamer 2003), but not by using a reduced
form, and typically can only make limited predictions about y.
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Model incompleteness often leads to set identification instead of point
identification.

Incompleteness or incoherency can arise in models with multiple decision
makers.

Models of a single optimizing agent are usually coherent though
sometimes incomplete (if, e.g., the same utility or profit level can be
attained in more than one way).

Equilibrium selection mechanisms or rules for tie breaking in optimization
models are techniques for resolving incompleteness.
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5. Causal Reduced Form vs Structural Model Identification

Recent rapid rise in so-called reduced form or causal inference methods,
often based on randomization. The so-called "credibility revolution."
Example proponents: Angrist and Pischke (2008), Levitt and List (2009),
Banerjee and Duflo (2009).

Most identification theory was developed for structural models,
Came before the recent rise of randomized/causal modeling in

econometrics.

Most surveys of identification in econometrics (e.g. Matzkin 2007, 2012)
don't mention this literature's use of identification
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Whats in a name?

Proponents, sometimes perjoratively called "randomistas," call their

methodology "reduced form."

But without model structure, what are these estimates reduced forms of?

Sometimes the methods are called "causal modeling" or "causal
inference."

But causal just refers to the estimand: how the change in treatment
changes an outcome. Many structural models identify causal effects.
Noted by Heckman (2008), some causal effects cannot be identified by
randomization based methods

Relevant notions of causality go back to Hume (1739) and Mill (1851)
Temporal based definitions of causality are Granger (1969) and Sims
(1972).

See Hoover (2006) for a survey of alternative notions of causality in
economics and econometrics.
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Another term used is "mostly harmless econometrics," title of Angrist and
Pischke's (2008) book (from a satirical science fiction novel that also
features "infinite improbability").

Finally, these methods are sometimes just called the "treatment effects" or
"program evaluation" literature,

But randomization is neither necessary nor sufficient for identification of
treatment effects in general.

For simplicity will just call these methods just "causal."
Further potential confusion: this literature also defines "local

identification" and "instrument validity" differently from the earlier
structural identification literature.
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Causal methods are generally characterized by:
1. focus on identification and estimation of treatment effects, and

2. emphasize experimental or natural randomization as their primary
source of identification.

Exceptions

a. numerous structural analyses (e.g. Roy 1951 model), also identify
treatment effects.

b. some reduced form methods, like diff-in-diff, are not based on random
assignment.

c. some literatures, e.g Pearl (2000, 2009), use structural type
assumptions (like causal diagrams) to help identify causal effects.

d. growing number of empirical structural analyses use randomized data.
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The Causal model ideal is randomized treatment (RCT - randomized
control trial or natural experiment).

Commonly in economic, treatment is not random; at best a variable that
correlates with treatment (the instrument) is randomly assigned.

Much causal literature is devoted to designing and interpreting RCTs (e.g.,
popular in development economics).

Much of the rest entails searching for and exploiting instruments that can

argue are randomly determined (thereby satisfying some conditional
independence assumptions).
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Much structural identification (like Cowles) is for simultaneous systems.

In contrast, consider Rubin (1974) counterfactual notation:
Y(t), the outcome Y that would have occurred if treatment T had
equaled t. This notation generally assumes T affects Y, not the reverse.

Causal inference doesn’t care about identifying structural parameters.

Causal estimands to be identified are summary measures.
Example: Average treatment effect (ATE): 6 = E (Y (1) — Y (0)).
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Other common causal estimands:

average treatment effects on the treated (ATT),
local average treatments effects (LATE),
marginal treatment effects (MTE),

quantile treatment effects (QTE).

Typical structural model obstacles to identification are problems like
simultaneity, nonuniqueness, multiple solutions.

The main obstacle to identification of causal parameters is that they are
defined in terms of unobservable counterfactuals.

However, causal estimands can also be expressed in structural terms -

identification issues then recast as endogeneity issues. See, e.g., Pearl
(2000, 2009, 2015) and Heckman (2008, 2010).
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5.1 Randomized Causal or Structural Identification? Do Both!
Heated debates on relative merits of causal vs structural methods.

Angrist and Pischke's (2008) "Mostly Harmless Economtrics" title implies
that structural modeling includes harmful econometrics.

Opponents refer to many reduced form studies as cuteonomics.

Economics journals are known for being either friendly or hostile to
structural methods.

These debates have even spilled over into the popular press, e.g., Scheiber

(2007) in the New Republic: "Freaks and Geeks; How Freakonomics is
Ruining the Dismal Science."
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Researchers do NOT need to choose between either searching for
randomized instruments or building structural models.

For identification, the best strategy is to exploit both approaches.

1. Causal inference based on randomization can be augmented with
structural econometric methods to cope with data problems like attrition,
sample selection, measurement error, and contamination bias.

Example Conlon and Mortimer (2016):

Field experiment randomly removed a popular brand from vending
machines.

But outcomes only observed when machines are serviced.

Combine causal analysis with a simple structural model of purchase timing.
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2. Structural Identification often depends on independence assumptions,
which are more likely to hold under randomization. Good causal
instruments are also generally good structural instruments

Example: Ahlfeldt, Redding, Sturm, and Wolf (2015), uses a natural
experiment (the partition of Berlin) to identify a structural model of gains
associated with people living and working near each other in cities.

The 2018 Frisch Medal committee said this paper, "provides an

outstanding example of how to credibly and transparently use a
quasi-experimental approach to structurally estimate model parameters."
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3. Causal effects can provide useful benchmarks for structure.

Example: Estimate a structural model from a large survey

Calculate an ATE from small randomized trials drawn from the same
underlying population.

Check if the ATE implied by estimated structural parameters equals the
causally estimated ATE.

Example: Andrews, Gentzkow and Shapiro (2017, 2018), construct
summary statistics based on the estimated joint distribution of reduced
form parameters (like LATE) and structural model parameters.

Use these statistics to assess how structural results depend on intuitively
transparent identifying information.
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4. Economic theory and structure can provide guidance regarding the
external validity of causally identified parameters.

Example: In regression discontinuity design (RDD) the cutoff or threshold
is often a policy relevant variable, e.g., the grade at which one qualifies for
a scholarship.

Dong and Lewbel (2015): Assume a mild structural assumption, local
policy invariance. Then can identify how RDD LATE would change if
threshold changed, even when no such threshold change is observed.

Their estimator also measures the stability of RDD LATE, see Cerulli,
Dong, Lewbel, and Poulsen (2017).

Example: Frélich and Huber (2017) use structural assumptions to separate
direct from indirect effects of treatment on outcomes.

Example: Rosenzweig and Udry (2016) use structure to model how ATE
(returns from policy interventions) estimated from randomized control

trials, varies with macro shocks like weather.
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5. Can use causal methods to link randomized treatments to observable
variables, then use structure to relate these observables to more policy
relevant treatments and outcomes.

Example: Middle aged and older women in India have high mortality rates.
Why?

Calvi (2016) uses a causal analysis (a change in inheritance laws) to link
changes in women's household bargaining power to their health outcomes.

She then constructs structural estimates of women's relative poverty rates
based on their bargaining power, measured by estimated household

resource shares.

Shows estimated relative poverty rates almost perfectly match women's
higher than expected mortality rates by age (correlation of .96).

Lewbel (Boston College) Identification Zoo 2019 28 / 70



Most causal analyses include informal speculation regarding the wider
implications of estimated treatment effects.

Calvi could have done that with just the causal part of her analysis that
linked power to health, speculating on the likely connection to mortality.

Such speculation is nothing more or less than crude structural modeling.

More convincing is the rigor imposed by real structural identification and
estimation, as in Calvi’s demonstration that such estimates really can
explain the observed excess mortality.
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Another, related example is Calvi, Lewbel, and Tommasi (2017):

Estimates LATE: treatment is women's control of most resources within a
household, outcomes are family health measures, instrument is changes in
inheritence laws.

Treatment can’t be directly observed, and so is estimated using a
structural model of household behavior.

Structural models can be misspecified and have estimation errors. The
estimated treatment will be mismeasured for some households.

Propose and apply an alternative estimator, called MR-LATE
(mismeasurement robust LATE), that accounts for the potential

measurement errors.

Here structure allows identification of a more policy relevant LATE than
would otherwise be possible.
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6. Big data analyses on large data sets can uncover promising correlations.

Structural analyses of such data might be used to uncover possible
economic and behavioral mechanisms that underlie these correlations.

Randomization can be used to investigate the causal direction of these
correlations.

Those who argue that machine learning, natural experiments, and
randomized controlled trials are replacing structural economic modeling
and theory are wronger than wrong.

As ML and experiments uncover ever more previously unknown
correlations and connections, the desire to understand these newfound
relationships will rise, thereby increasing, not decreasing, the demand for
structural economic theory and models.
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7. Structural type assumptions can clarify when and how causal effects
may be identified.

Examples: Pearl (2000, 2009) and Pearl and Mackenzie (2018):
structural causal models and causal diagrams, directed acyclic graphs,

Another line of research that formally unifies structural and randomization
based approaches to causal modeling is Vytlacil (2002), Heckman, Urzua
and Vytlacil (2006), Heckman and Vytlacil (2007), and Heckman (2008,
2010).
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5.2 Randomized Causal or Structural Identification: An Example

Let Y; be an observed outcome for individual i.
Let T; be a binary endogenous regressor (treatment indicator).
Let Z; be a binary covariate (potential instrument), correlated with T.

¢ includes the first and second moments of (Y, T, Z).
In practice the DGP is such that these moments can be consistently
estimated by sample averages.

We will compare a structural vs a causal model. Other comparisons:
Imbens and Angrist (1994), Angrist, Imbens, and Rubin (1996), Vytlacil
(2002) and Heckman (1997, 2008, 2010).

Goal here: illustrate differences between a popular structural and a popular
causal model, in terms of their assumptions and notation.
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Structural model: linear regression Y = a+ bT + e for error e and
constants a and b, under the standard instrumental variables identifying
assumption that E (eZ) = 0.

Causal model: the local average treatment effect (LATE) model of Imbens
and Angrist (1994).

Key difference: Structural model makes a behavioral (response to
treatment) assumption: any heterogeneity of the impact of T on Y is in
the error term e, assumed uncorrelated with Z. Identifies ATE.

LATE model drops this behavioral restriction, and instead has a "no

defiers" assumption, and identifies the average effect of T on Y for a
subpopulation called compliers.
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What makes one model or analysis structural and the other causal?

Structural models usually have:
fixed "deep" parameters (like the coefficient b),
and behavioral restrictions (like E (eZ) = 0).

Structural models: generally models of economic behavior, ideally derived
from (and identified by) economic theory.

Causal models usually have:

As few behavioral assumptions as possible,

randomization as the primary source of identification,

a focus on identifying treatment effects: the average (in a subpopulation)
change in an outcome from changing a covariate value (the treatment).
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NOTE: what we are here calling structural vs. causal restrictions are just
common examples in the literature.

They do NOT define what makes a model structural or causal.

Not all structural models are linear regressions
not all linear regressions are structural
not all causal analyses areLATEs.

These are just typical examples of the kinds of models each literature uses
and the kinds of restrictions that each literature imposes.
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Y is outcome, T is a binary endogenous regressor (treatment indicator), Z
is a binary covariate (potential instrument), correlated with T.

¢ includes the first and second moments of (Y, T, Z).

Let ¢ = cov (Z,Y) /cov (Z, T), which is therefore identified (by
construction).

No model has yet been specified, but this ¢ would be the limiting value of
the estimated coefficient of T in a linear instrumental variables regression
of Y on a constant and on T, using a constant and Z as instruments.
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Start with the most general possible model for Y and T:

y = G(T,Z,U) and T:R<Y,Z, V)

U and V are vectors of unobservable errors.
G and R are arbitrary, unknown functions.

Assume G does not depend directly on Z (exclusion).
and R does not depend directly on Y (triangular).

Model becomes Y = G (T, U) and T=R (Z, V)
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Have Y = G <T, U) and T = R(z, V)
Let Uo:G<0,U~), Ulzc(l,fi)—c(o,q),
v0=R<o,v), V1:R<1,V>—R(O,V).

Since both T and Z are binary, this lets us without loss of generality
rewrite the model as

Y=Uy+Ui;T and T =V + V7.
This is a linear random coefficients model.

Also: Since T and Z are binary, we also have that V and Vj + V are
binary.
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Now write the same model causally.

Identification involving outcomes based on treatment selection goes back
to Neyman (1923), Wright (1925), Haavelmo (1943), Wald (1943), Roy

(1951), and Heckman (1978). But typically use the counterfactual causal
notation of Rubin (1974):

Y (t) is the random variable denoting outcome Y if T = t.
T (z) is the random variable denoting treatment T if Z = z.

How do the notations relate? Y (t) = G (t, U) T(z)=R <z, V)
Get Y(O) = Uy, Y(l) = Up + Uy, T(O) =V and T(].) =W+ W.
Exclusion: Y (0) and Y (1) do not depend on Z .

If started with Y (t, z), the exclusion is then Y (t,1) = Y (t,0).
Triangular: T (0) and T (1) do not depend on Y.
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So far, structural and causal are identical; both assumed nothing except
exclusions/triangular structure.

Now make a common causal inference assumption: SUTVA (Stable Unit
Treatment Value Assumption):

SUTVA means that any one person’s outcome is unaffected by the
treatment that other people receive.

The term SUTVA was coined by Rubin (1980), concept goes back at least
to Cox (1958), and perhaps implicit in Fisher (1935) and Neyman (1923,
1935).
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SUTVA, Stable Unit Treatment Value Assumption, formal definition:

For any two different people i and j, Y; (0) and Y; (1) are independent of
T;.

SUTVA essentially rules out social interactions, peer effects, most general
equilibrium effects.

SUTVA is behavioral. But commonly accepted in causal, since
enforce-able in many experimental settings (by, e.g., physically separating

experimental subjects).

Randomized natural or field experiments can violate the SUTVA, due to
people interacting with each other, either directly or via market effects.

Lewbel (Boston College) Identification Zoo 2019 42 /70



If SUTVA is violated one must usually either

1. make behavioral (structural) assumptions to gain point identification, or
2. construct complicated experiments to identify the spillover effects, or

3. settle for set identification of causal effects.

4. adjust inference to account for the failure of point identification
Examples: See Rosenbaum (2007), Manski (2013), Lazzati (2015),
Angelucci and Di Maro (2016), and Laffers and Mellace (2016)

Structural analogs to SUTVA are restrictions on correlations between
{ Ui, Uii} and {Vo;, Vi, Z;}.

For simplicity, here assume {Up;, U1;, Vo;, V4i, Z;} independent across i.
Is sufficient, stronger than necessary for SUTVA.

A structural alternative to SUTVA would be to model dependence across
individuals, e.g., a social interactions model as in Blume, Brock, Durlauf,
and loannides (2011).
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Y=U+UTand T = Vy+ ViZ. Same model as Y (T) and T (2).

Have assumed exclusions, and SUTVA type independence across people.
What else?

By construction T depends on V4 and V;.
Endogenous T could also correlate with Uy and U .

Want Z to be an instrument, so add the causal assumption:
{Y(1),Y(0), T (1), T (0)} is independent of Z.

This is called unconfoundedness. Is equivalent to Z randomly assigned.

In the structural notation, unconfoundedness is
{U1, Uy, Vo, V1 } is independent of Z.
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Y=U+UTand T = Vy+ ViZ. Same model as Y (T) and T (2).

Assumptions so far: Exclusions/triangular, SUTVA /independence,
unconfoundedness.

Assume also structurally that E (V4) # 0, or equivalently in the causal
notation, that E (T (1) — T (0)) # 0. This assumption ensures that the

instrument Z is relevant.
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Given just these assumptions, what does the instrumental variables
estimand ¢ equal?

_cov(Z,Y) cov(Z,Ug+UiT)  cov(Z Upg+ U (Vo +WVi2Z))

cov(Z, T)  cov(Z (Vo+ Wi2)) cov(Z, (Vo +WV12))

cov (Z, U1V12> o E(U1V1) var(Z) o E(Ul\/l)
cov(Z,WZ) — EM)var(Z)  E(V1)
For this problem, the only difference between structural and causal

approaches will be that different additional assumptions are made to
interpret the equation ¢ = E (U1 ;) /E (W1).
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Consider structural identification first:

Model isstill: Y =Uy+ Ui T and T =V + W1 Z.
Can rewrite this as: Y = a4+ bT + e,
where b=E (U;1), e= (Ui —b) T+ Uy —a.

Structural identification question: When does IV estimand
c=cov(Z,Y)/cov(Z, T) equal the structural coefficient b?

Standard answer: Z being a valid structural model instrument requires
cov (e, Z) = 0.

And what does b mean?
Recall definition ATE = E[Y (1) — Y (0)]. Under our assumptions,

Up =Y (1) — Y (0). Therefore E[Y (1) — Y (0)] = E (U;) = b. So the
structural coefficient b is precisely the causal ATE.
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With Y = a+ bT + e, have Z is valid structural instrument if
cov (e,Z) =0, and then IV estimand ¢ = b.

But what does cov (e, Z) = 0 mean? We showed
cov (e, Z) = cov (Ui, Vi) var (Z), so cov (e, Z) =0 if cov (U1, V1) = 0.
Note from above that

E(U1V1) _ E(Ul) E(Vl) +COV(U1, \/1)
E(WV) E (V1)

= E(U)+ CO‘;(EJ\Z )Vl) — b+ CO‘;(EJ\Z )Vl)

So again ¢ = b if cov (U;, V1) = 0.

Summary: the structural identifying assumption is cov (Ui, V1) = 0.
Under this assumption, ¢ = b = ATE for the population.

Note: under other assumptions, can interpret ¢ as the average treatment
effect on the treated. See, e.g., Heckman (1997).
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Now look at causal identification, and then compare.

Define a complier: A person i for whom Z; and T; are the same random
variable. If a complier has Z = 0, then he has T =0, and if has Z =1,
then has T = 1.

Define a defier: A person i for whom Z; and 1 — T; are the same random
variable.

We can’t know who the compliers and defiers are! Because they are
defined in terms of counterfactuals.

If someone has Z = 0, we can see if they have T =0or T =1, but we
can't know what their T would have been if they had been assigned Z = 1.
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Recall T = Vy + Vi Z.  All the possibilities relating T to Z are:

Compliers: T = Z: Vo=0and V; =1.
Defiers: T=1-2: VWwo=1and V; = —1.
Always takers: T =1 for any Z: W=1and V; =0.
Never takers: T = 0 for any Z: Vo =0and V; =0.

Compliers are the only type that have V; = 1.

Imbens and Angrist (1994) define the LATE (local average treatment
effect) as the ATE just among compliers.

(note: their use of the word local is not the same as in local
identification).

In our notation here, LATE = E[Y (1) — Y (0) | V4 =1].
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Now revisit the IV coefficient c. Let P, be the probability that V; = v.
Then, by definition of expectations,

E(UiV4)

c = —

E(W)

E(UVi | Vi=1)PA+E(UVi | Vi=0)Py+E(U1Vi | Vi=—-1)P_
EM|Vi=1)PA+EMVi |VAi=0)P +EWV | Vi=-1)P,

_E(U | Vi=1)P—E(U|Vi=-1)P,

P — P,
Imbens and Angrist (1994): Assume that there are no defiers in the
population. This rules out the V; = —1 case, making P_; = 0.

Then above simplifies to: ¢ = E (U; | Vi = 1) = LATE.

So causal assumes V4 # —1 (no defiers) and identifies LATE for just
compliers.
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Comparing Structural and Causal:

Modelis Y = Uy + Ui T and T = Vg + V1 Z.
where V7 and Vi + VW are binary.

Given our assumptions: Exclusions/triangular, SUTVA /independence,
unconfoundedness;

Structural makes the additional assumption cov (Ui, Vi) = 0. This
restricts heterogeneity of the treatment effect U;. Identifies ATE for the
population.

Causal instead makes the additional assumption V4 # —1 (no defiers).
This restricts heterogeneity of types of individuals. Identifies LATE for
compliers, says nothing about the treatment effect on non-compliers.
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Comparing Structural and Causal - continued:

Neither the structural nor causal assumptions above are a priori more
plausible. Both require assumptions on unobservables, not just

cov (U, Vi) =0 or V4 = —1, but also by assumptions like exclusion
restrictions and SUTVA.

Structural cov (Ui, V1) = 0 restricts assumed heterogeneity of the
treatment effect U;. Assumes an individual's type Vi is on average
unrelated to the size of personal treatment effect U;. But delivers b, the
population ATE.

Causal Vi # —1 (no defiers) restricts heterogeneity of types of individuals.
Compared to cov (U, V1) = 0, has the big advantage of not imposing
restrictions on the Y equation. But only delivers LATE.
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Comparing Structural and Causal - continued:

Can show with binary Z and T and our other assumptions that the
structural restriction cov (U, V1) = 0 requires either that defiers exist, or
that everyone is a complier, or that E (U | Vi =0) = E (U1 | Vi =1).
Pretty limiting compared to causal V; # —1.

But, this setup is very restrictive - what if have other covariates, or if Z or
T has more than two values?

Then for causal analysis, the number of types (compliers, deniers, etc.)
becomes large and assumptions about them gets complicated and

unwieldy.

But structural stays just the same: cov (Ui, V1) = 0 or equivalently,
cov (e, Z) =0.
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Some Limits to LATE:

LATE says nothing about treatment effect on noncompliers. Maybe ok if
Z is a policy variable.

People who seek treatment for reasons related to the outcome are by
construction not compliers! Generally need structure like a Roy (1951) to
identify causal relationships when treatment correlates with outcomes.
See, e.g., Heckman (2008).

Compliers are essentially people for whom treatment was randomly
assigned. Unreliable for policy if compliers are not representative. Stucture
might also be unreliable, if the population doesn't approximately satisfy
assumed behavioral restrictions.

We don't know who the compliers are. Though we can identify the
probability someone is a complier, conditional on their observable
characteristics (Angrist and Pischke 2008). Can also get bounds on ATE
(Manski 1990, Balke and Pearl 1997).
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Another property of LATE: the definition of a complier depends on Z.

Suppose we saw a different instrument Z instead of Z.
Let c =cov(Z,Y) /cov(Z, T) and € = cov (2 Y) / cov (? T).

If Z is a valid instrument in the structural sense, then c =¢ = b = ATE
in the population.

Also could then test instrument validity. If reject ¢ = ¢, then either Z or
Z is not a (structurally) valid instrument.

But even if both are causally valid, will ususally have ¢ # ¢. Both are
LATEs, but for different (unknown) compliers.

Are there any testable implications of causal instrument validity? Yes,
there exist a few weak inequalities one can test, e.g., P; can't be negative.
See, e.g., Kitagawa (2015).
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5.3 Causal vs Structural Simultaneous Systems

Assume now a simultaneous system of equations, say
Y=U+UXand X=H(Y,Z V).

(Uo, Ur) and V are unobserved error vectors.

Observe Y, X, and instrument Z. Using X not T because might not be
treatment (need not be binary).

As before, analyze meaning of ¢ = cov (Z,Y) /cov (Z, X).

Structual analysis is exactly the same as before: Have Y = a4 bX + e
where b= E (U;) and e = Uy + (U; — b) X. If cov (e, X) = 0 then
¢ = b = average marginal effect of X on Y.

In contrast, causal analysis is much more complicated. Angrist, Graddy
and Imbens (2000) show under LATE type assumptions, ¢ equals a
complicated weighted average of U, with weights that depend on Z and
some weights are zero.
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Another limitation of applying causal methods to simultaneous systems:

Counterfactual notation implicitly assumes that reduced forms exist
(indeed, are often called reduced form models).

Example: an incomplete model like in Section 3, endogenous Y and X
have
Y=I(X+U>0), X=Y+Z+V,and -1<U+Z+V<O.

Observe Y, X, Z. Could be a game where Y and X are player
choices/actions.

A reduced form Y = m(Z, U, V') does not exist.

So assuming any Y (z) imposes additional info that is not in the model.
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Another limitation in applying causal analyses to simultaneous systems:
SUTVA again.

Many simultaneous systems have treatment of one person affects
outcomes of others. Examples: peer effect models, social interactions
models, network models, general equilibrium models.

Example: Progresa and Oportunidades in Mexico. Widely cited example of
randomized treatment.

But people move to communities for the program, or interact with treated
individuals, or act expecting the program may expand to their own
community (see, e.g., Behrman and Todd 1999).

As noted earlier, point identification if SUTVA is violated usually requires
behavioral, structural type assumptions (see, e.g., Manski 2013).

These may be why causal methods popular in traditionally partial
equilibrium analysis fields (e.g., labor economics and micro development),
but not where general equilibrium models are the norm (e.g., industrial
organization and macroeconomics).
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5.4 Randomized Causal vs Structural ldentification: Conclusions

Primary advantage of causal methods: History of success in the sciences.
Randomized controlled trials (RCT's) referred to as the gold standard for
empirical work in other fields.

Randomization in economic field and natural experiments strives to
approximate that gold standard.

Another virtue of causal methods: treatment effects are fundamentally
interpretable estimands.

As long as the framework is coherent and complete, so potential outcomes
are well defined, then causal estimands like ATE, ATT, etc., are
meaningful.

In contrast, when a structural model is misspecified, the deep policy

invariant parameters it attempts to identify can become meaningless, or at
best difficult to interpret.
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An advantage of structural models:

They contain info about underlying behavioral structure.
Structural models can incorporate and test restrictions implied by
economic theory

Can get identification from theory restrictions, without randomization.

Structural models can cope with data issues that cause difficulties for
causal analyses.

Examples: Structures that account for self selection into treatment,
or for measurement problems such as sample attrition, or for SUTVA
violations like network effects and social interactions.
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Features that are obstacles to causal inference can help identification in
structural models.

Example: with random assignment, impossible to identify features of the
joint distribution of potential outcomes, such as what fraction of the
population would benefit from treatment (see, e.g., Heckman 2008).

In the Roy (1951) model and competing risks models with covariates,
selection is based on maximization over potential outcomes.

This provides information about the joint distribution of potential
outcomes that could not be uncovered by random assignment. See
Heckman and Honoré (1989, 1990) and Lee and Lewbel (2013).
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Common objection to the structural approach:
Where are the deep parameters structural models have uncovered?
What are their widely agreed upon values?

One answer: look at calibration.

Calibrated models in macroeconomics have parameters users treat as
known.

Many parameters have values, mostly from prior structural work, that
users largely agree upon.

Example: the calibrated value of the rate of time preference.
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Structural model experience has lead to consensus among economists
regarding reasonable ranges of values for many parameters, such as price
and income elasticities.

Empirical structural analyses have found behavioral relationships, like
Engel's (1857) law, that appear to hold up almost universally.
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Main disadvantage of imposing behavioral, structural type restrictions for
identification?

Reality is complicated, structural models oversimplify, so are misspecified.
"All models are wrong, but some are useful" - George Box (1979),

Generally don't know how much misspecification corrupts interpretation
and applicability of structural model estimates.

But, causal models can also be misspecified:
Example: Even with randomized Z, in LATE the population may contain
defiers or SUTVA may be violated.
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More specification trouble for both:
Both structural and causal models generally require covariates:

Including covariates requires functional forms that may be parametrically
misspecified (e.g, linear probability models) or are nonparametric, suffering
the curse of dimensionality upon estimation.
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Another issue for both structural and causal models:

External validity. If the environment changes even slightly, how would an
identified parameter or treatment effect change?

Deep structural parameters are supposed to be constants across
environments.

But behavioral restrictions may hold in one context and not another
Or correct specifications may change due to, e.g., the Lucas (1976)
critique.

External validity is a larger problem with causal models
These have no underlying economic or behavioral restrictions that one can
assess in a new environment.

Example: Rosenzweig and Udry (2016) document how macro conditions
that one cannot control for, like weather, can dramatically affect estimated
treatment effects obtained in randomized controlled trials.

Empirical methods of assessing external validity is an active area of
research.
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Economic policy is often concerned with characteristics that cannot be
directly observed.

Examples: utility, risk aversion, noncognitive skills, bargaining power,
expectations, or social welfare.

Structural, behavioral assumptions are usually required to link observables
these elusive concepts, and hence to evaluate the impacts of treatment on

them.
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Summary:

Identification based on randomization in economics has been called
"credibility revolution."

But in practice both causal and structural methods depend on a host of
assumptions

Either can lead to invalid (or "incredible") inference when their identifying
assumptions are violated.

Both sources of identification have advantages and disadvantages.

Best practice: Do both!
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End of Part 2

Part 1 had sections:
1. Introduction
2. Historical Roots of ldentification

3. Point Identification

Part 3 will have sections:

6. ldentification of Functions and Sets

7. Limited Forms of ldentification

8. ldentification Concepts that Affect Inference

9. Conclusions
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