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The Identification Zoo - Part 3 - sections 6, 7, 8, and 9.

(These are notes to accompany the survey article of the same name in the
Journal of Economic Literature).

Well over two dozen types of identification appear in the econometrics
literature, including (in alphabetical order):

Bayesian identification, causal identification, essential identification,
eventual identification, exact identification, first order identification,
frequentist identification, generic identification, global identification,
identification arrangement, identification at infinity, identification by
construction, identification of bounds, ill-posed identification, irregular
identification, local identification, nearly-weak identification,
nonparametric identification, non-robust identification, nonstandard weak
identification, overidentification, parametric identification, partial
identification, point identification, sampling identification, semiparametric
identification, semi-strong identification, set identification, strong
identification, structural identification, thin-set identification,
underidentification, and weak identification.
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1. Introduction

Econometric identification really means just one thing:

Model parameters or features uniquely determined from the observable
population that data are drawn from.

Goals:

1. Provide a new general framework for characterizing identification
concepts

2. Define and summarize, with examples, the many different terms
associated with identification.

3. Show how these terms relate to each other.

4. Discuss concepts closely related to identification, e.g., observational
equivalence, normalizations, and the differences in identification between
structural models and randomization based reduced form (causal) models.
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Part 1 had sections:

1. Introduction

2. Historical Roots of Identification

3. Point Identification

Part 2 had sections:

4. Coherence, Completeness and Reduced Forms

5. Causal Reduced Form vs Structural Model Identification
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6. Identification of Functions and Sets

This section discusses:
1. Nonparametric and semiparametric identification
2. Set identification
3. Normalizations in identification (frequently used, rarely discussed)
4. Examples of these (special regressor).

Sections 1. and 2. will be brief, since many good surveys of them already
exist, e.g.

Powell (1994) focuses on semiparametrics.
Chesher (2007) nonadditive models with nonseparable errors
Matzkin (2007, 2012) economic and functional restrictions to identify
vectors and functions.
Tamer (2010) for set identification.
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6.1 Nonparametric and Semiparametric Identification

Parametric identification: θ is a finite set of constants, and all possible
values of φ also correspond to different values of a finite set of constants.

Nonparametric identification: θ is infinite dimensional vectors or functions.

Example: Assume IID Wi , so knowable φ is the distribution function
F (W ). Let θ be the density function f (W ) = ∂F (W ) /∂W . Is
nonparametrically identified by construction.

Example: Let φ be the joint distribution F (Y ,X ) (e.g., if DGP is IID
Yi ,Xi ). Model Y = m (X ) + e with E (e | X ) = 0. Then m (X ) is
nonparametrically identified by construction - it can be recovered from
F (Y ,X ).
Have m (X ) = E (Y | X ) =

∫
supp(Y |X ) Yf (Y | X ) dY and the conditional

density f (Y | X ) is identified from the joint distribution function
F (Y ,X ).
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Semiparametric Identification: θ includes both vectors and functions, or θ
vectors and φ functions.

Semiparametric models are (loosely) models containing vectors of
parameters of interest, but also contain unknown functions, which may be
nuisance functions.

Example (Härdle and Stoker 1989) Average derivative vector
θ = E [∂m (X ) /∂X ] where m (X ) = E (Y | X ), with iid Y ,X .

Example : Given iid Y ,X ,Z , a partially linear model (see, e.g., Robinson
1988) is Y = m (X ) + Z ′β+ e with E (e | X ,Z ) = 0 and var (X | Z )
nonsingular. Following Robinson (1988), identify β from linear regression
(Y − E (Y | X )) = (Z − E (Z | X ))′ β. Then given β, m is identified by
m (X ) = E (Y − Z ′β | X ).

Other early examples of semiparametric identification are Manski (1975,
1985) and Cosslett (1983).
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Consider: ordinary linear regression Y = X ′β+ e with E (e | X ) = 0.

If θ is β and φ is first and second moments of Y ,X like in Wright-Cowles,
then is parametric identification.

If θ is β and distribution of e, and φ is distribution of Y ,X , then is
semiparametric identification.

As this shows, distinctions between parametric and semiparametric
identification can be somewhat arbitrary. See Powell (1994) for further
discussion of this point.

These types of distinctions can be traced back at least to Hurwicz (1950).
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In theory, same steps for semi or nonparametric identification as for
parametric:

Establish that different values of θ are not observationally equivalent.

In practice, can be much harder. e.g., parametric order condition involves
counting number of equations and vs number of unknowns. Doesn’t work
when the unknowns themselves are also functions.
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Consider: nonparametric instrumental variables:

Model is Y = m (X ) + e, E (e | Z ) = 0 for instruments Z , some
regularity.
θ is m (X ) and knowable φ is distribution F (Y ,X | Z ) .

E (e | Z ) = 0 for all z ∈ supp (Z ) implies∫
supp(Y ,X |Z=z ) (Y −m (X )) dF (Y ,X | z) = 0.

θ is identified if this integral equation can be uniquely solved for m (X ).

Newey and Powell (2003) show that identification here is equivalent to an
example of statistical completeness
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Have identification if integral equation∫
supp(Y ,X |Z=z ) (Y −m (X )) dF (Y ,X | z) = 0 can be uniquely solved for
m (X ).

This identification is an example of statistical completeness (see Newey
and Powell 2003).

Here identification corresponds to uniqueness of the solution of an integral
equation.

If Y ,X , and Z were all discrete would reduce to parametric identification.
Then this integral equation would reduce to a matrix equation.
Identification would only require nonsingularity of a moment matrix, as in
linear instrumental variables regression.
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Method of identifying vector θ by inverting matrices often can be extended
to identify function θ (solving integral equations) by "operator methods."

Roughly correspond to inverting the integrals (like expectations of
continuous random variables) that express φ in terms of θ, in the same
way that the sums (like expectations of discrete random variables) may be
solved for vectors θ by matrix inversion.

Concepts like completeness and injectivity are crucial to identification, as
infinite dimensional analogues to the invertibility of matrices.

Examples:
Schennach (2007), identifying nonparametric regressions with
mismeasured regressor,
random coeffi cients as in Beran, Feuerverger, and Hall (1996),
many of the structural models in Matzkin (2005, 2007, 2012),
Additional examples of semiparametric identification are given in Section
6.4 below.
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Often model restrictions are moments, which take the form of integrals.
Semiparametric identification then corresponds to integral equations
having a unique solution.

Examples are random coeffi cients models as in Beran, Feuerverger, and
Hall (1996), measurement error problems as in Schennach (2007), and
many structural models in Matzkin (2005, 2007, 2012).

Additional examples of semiparametric identification are given in section
6.4 below.
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6.2 Set Identification.

Partial Identification generally refers to where φ provides info about θ, but
not enough info to identify θ.

Set Identification: The true θ0 is set identified if there exist some values of
θ ∈ Θ that are not observationally equivalent to θ0.

The identified set is the set of all values of θ ∈ Θ that are observationally
equivalent to θ0.

Point identification is when the identified set only contains one element.

We don’t know which value of θ is θ0. To prove set identification, need to
show that for any θ̃ ∈ Θ, there exist some values of θ ∈ Θ that are not
observationally equivalent to θ̃.

See also Chesher and Rosen (2017).
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Example of Set Identification:

Let W be the fraction of a consumer’s total budget that is spent on food.
Model M is observe W . Budget shares are nonnegative and sum to 1.
What is knowable, φ, is the distribution of W in the population.

Then can identify β = E (W ), the expected budget share for food.

We want θ, the expected budget share for clothing.

θ is not point identified from this model. The identified set for θ is the
interval [0, 1− β].

This set also provides bounds on θ (inequalities that θ satisfies). Set
identification does not always yield bounds.

Sharp bounds are tightest bounds possible on θ given M and φ.
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Early examples of set identification:

Frisch (1934) on measurement errors, Reiersøl (1941) on correlated errors,
Marschak and Andrews (1944) on production functions, Fréchet (1951) on
recovering joint distributions from marginals, and Peterson (1976) on
competing risks models.

Bounds on behavior from economic theory: revealed preference inequalities
of Afriat (1967) and Varian (1982, 1983).

Systematic study of Set identification: Manski (1990, 1995, 2003).
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Interest in set identification grew when methods for inference on
estimators of set identified parameters began to be developed, as in
Manski and Tamer (2002).

Much modern literature on set identification focuses on:
1. Derivation of sharp bounds.
2. Verifying that one has obtained the smallest possible identified set.
3. Finding cases where the identified set is very small relative to Θ.
4. Improving methods for estimation and inference.

An important tool for studying set identification is the theory of random
sets, see Beresteanu, Molchanov, and Molinari (2011), Bontemps,
Magnac, and Maurin (2012), and Chesher and Rosen (2014).
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Typical reasons for set rather than point identification:

Model incompleteness (often taking the form of inequality constraints).

Limited observation of data, like regressors censored, discretized,
mismeasured, or observations missing not at random. See, e.g., Manski
and Tamer (2002) and references therein.

Economic theory that only provides inequalities rather than equalities on
behavior, e.g., Pakes, Porter, Ho, and Ishii (2015).

Presence of unobserved variables (e.g. counterfactuals, random utility
parameters, unobserved state variables). Schennach (2014) provides a
general technique for deriving observable moments that characterize the
identified set in models defined by moments over both observables and
unobservables.

Same as reasons for nonidentification.
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Some (e.g., Chesher and Rosen 2017) argue that economic theory rarely
provides enough restrictions to point identify parameters of interest.
Claim much econometric literature devoted to poorly motivated tricks to
obtain point identification.
They essentially argue that set identification should be treated as the usual
situation.

A less extreme view: make needed assumptions to obtain point
identification.
Then, examine what happens to the identified set when the strongest or
least defensible point identifying assumptions are dropped.

Example: Lewbel (2012) uses a strong heteroskedasticity restriction to
obtain identification in models where ordinary instruments would usually
be used for estimation, but are unavailable.
That paper includes construction of identified sets when this strong point
identifying restriction is relaxed.
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Non-robust identification (Khan and Tamer 2010): Defined as when a
point identified θ loses even set identification when an identifying
assumption is relaxed.

Example: θ = E (Y ∗), random scalar Y ∗ can be any real number.
DGP is iid observations of Y = I (−b ≤ Y ∗ ≤ b)Y ∗ for some constant b.
Observed Y is a censored version of the true Y ∗. φ is the distribution of
Y .
The no censoring assumption that b = ∞, is non-robust because
a. with the assumption θ is point identified.
b. without the assumption θ could be any real number.

Intuition: even if Y has only a 1% chance of being larger than b, it could
take on an arbitrarily large value with that .01 probability, resulting in θ
being arbitrarily large.

A non-robust identifying assumption is one that is crucial in the sense
that, without it, the data do not limit the range of values θ could take on.
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Set identification is an area of active research in econometric theory
But it is only applied rarely in empirical work. Why?

Estimation and inference on sets is complicated.
generally requires multiple tuning parameters and penalty functions.
See, e.g., Chernozhukov, Hong, and Tamer (2007).

Freedman (2005), Angrist and Pischke (2008), etc., argue that modern
econometrics is too complicated; too diffi cult to discern or assess the
plausibility of underlying identifying assumptions and to implement
estimators.

But irony? Removing complicated identifying assumptions leads to set
identification, which requires even more complicated econometrics for
identification, estimation and inference.
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6.3 Normalizations in Identification

Often identification, particularly non- and semi-parametric identification,
requires normalizations.

Example: Linear index model E (Y | X ) = g (X ′β), g is strictly
monotonically increasing, E (XX ′) is nonsingular, φ is the joint
distribution of Y and X .

Linear regression is a linear index model where g (·) = ·.
Probit is a linear index model where g is the cumulative standard normal
distribution function.
Logit, and many censored and truncated regression models are also linear
index models.

Case 1: g is known and θ = β. Then θ is identified.
Proof is by construction: β = [E (XX ′)]−1 E

[
Xg−1 (E (Y | X ))

]
.
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Case 2: g is unknown and θ = {g , β}.

For any positive constant c we can define
θ̃ = {g̃ , β̃} by β̃ = β/c and g̃ (z) = g (cz).

Then for any X we have g̃
(
X ′ β̃

)
= g (X ′β) so

θ is observationally equivalent to θ̃.

This shows θ is not identified. At best it is set identified, where the set
includes θ̃ for any c > 0.
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Suppose all the elements θ̃ in the identified set have β̃ that is proportional
to β.

So all have the form of β̃ = β/c . Then say β is identified up to scale.

To actually identify β, we need a scale restriction like assuming the first
element of β equals one, or that the length of the vector β equals one.

Restricting scale of β might be without loss of generality (wlog) here
because the scaling of β is absorbed into the definition of g .

Loosely, restrictions are called normalizations when they are wlog, i.e., if
economically meaningful parameters or summary measures are unaffected
by the restriction.

Sometimes the term "free" normalization is used to emphasize a wlog
restriction.
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When is a restriction a free normalization vs a behavioral restriction?
It depends on how we use and interpret the model.

Example: instead of θ = {β, g}, let θ = {g (X ′β) , βg ′ (X ′β)} where g ′
denotes the derivative of the function g .

This θ is E (Y | X ) and its derivatives (marginal effects) ∂E (Y |X )
∂X .

As before {g̃ , β̃} differs from, but is observationally equivalent to, {g , β}.
But now θ = θ̃.

β is only identified up to scale, but the economically meaningful
parameters θ are point identified.

Here the scale normalization is a free normalization, wlog.
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A scale restriction is not a free normalization if the level of X ′β is
assigned some economic meaning, like dollars.

Example: willingness to pay (WTP). Y = 1 if willing to pay more than V
dollars for a product or service.
Let X ′β+ e be WTP, where e ⊥ X .

Then Y = I (X ′β+ e ≥ V ).
so E (Y | X ) = g (X ′β− V ) where g is distribution of −e.

Here X ′β− V is the index being estimated.
Scaling is not free. X ′β+ e is WTP only if the coeffi cient of V equals
minus one.

For general semiparametric identification and estimation of willingness to
pay models see Lewbel, Linton, and McFadden (2012).
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Scale restrictions or normalizations are common in semiparametric models
(An early example is Powell, Stock, and Stoker 1989).

Also common are location restrictions or normalizations.

Let E (Y | X ) = g (X + α), g is an unknown function, α is an unknown
scalar.

Generally α is not identified, because observationally equivalent to α = 0
using g̃ such that g̃ (X ) = g (X + α).

As with scaling, location normalizations may or may not be free,
depending on context.
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Example: threshold crossing binary choice model
Y = I (α+ X ′β+ e ≥ 0) where e ⊥ X .
Is a special case of a linear index model, has E (Y | X ) = g (X ′β) where
g is the distribution function of − (α+ e).

Identification here requires both location and scale normalization.
Parametric probit assumes E (e) = 0 and var (e) = 1.
This uniquely determines the location and scale of α+ X ′β+ e.

We could instead (observationally equivalently) impose α = 0, β′β = 1,
and let e have arbitrary mean and variance.

In semiparametric models, usually impose normalization on α and β, not
E (e) and var (e).

Why? often simplifies identification and estimation. Latter sometimes
converge slower.
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Nonseparable error models.

Y = g (X , e), the function g and the distribution of an unobserved
continuously distributed scalar error e are unknown.

Observationally equivalent to Y = G (X , h (e)) for any unknown strictly
monotonic, invertible function h, where G (X , v) = g

(
X , h−1 (v)

)
.

Generally, identification of g requires assuming that the entire distribution
function of e is known.
Typical is assuming e is uniform on [0, 1] or is a standard normal.

Is this a free normalization? Yes, IF only care about conditional
distribution of Y given X .

Otherwise, if g as a structural model, this normalization is a strong
behavioral restriction.

See Lewbel (2007c) for details. Matzkin (2007, 2012) provides multiple
examples.
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Another normalization:

Let utility from choice Y = y be αy + X ′βy + ey for y = 0, 1.

Utility maximization means choose Y = I (α+ X ′β+ e ≥ 0), where
α = α1 − α0, β = β1 − β0, and e = e1 − e0.

Interpret α+ X ′β+ e as utility from Y = 1 if assume the normalization
that utility of the "outside option" α0 + X ′β0 + e0 = 0.

In static discrete choice model, is generally a free normalization.

But in dynamic discrete choice models, identification typically assumes the
outside option has the same utility in every time period. This is not free,
imposes real restrictions on preferences and hence on behavior. See, e.g.,
Rust (1994) and Magnac and Thesmar (2002).
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Another normalization: choice of cardinalization of ordinally identified
utility levels.

Choose a quantity vector x to maximize utility U (x) under some
constraints (e.g., a budget constraint).

Revealed preference, Samuelson (1938, 1948), Houthakker (1950),
Mas-Colell (1978): Given demand functions, indifference curves (i.e., level
sets) associated with U (x) are identified.

Actual utility or happiness level U (x) associated with each indifference
curve is not identified. Utility is identified up to an arbitrary monotonic
transformation, which we may call a normalization.

Similarly, Y = I (α+ X ′β+ e ≥ 0) is observationally equivalent to
Y = I (g (α+ X ′β+ e) ≥ g (0)) for strictly monotonically increasing g .
Without more info, can’t tell if one’s actual utility level is α+ X ′β+ e or
g (α+ X ′β+ e) for any such g .
As before, whether choice of g corresponds to a free normalization or to a
behavioral restriction depends on context.
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Final normalization notes:

When comparing parametric and semiparametric estimation:
Either recast θ in the same normalization, or compare summary measures
like marginal effects that are independent of normalization.

Also, choice of normalizations can affect precision of estimates, even if
irrelevant for identifcation.

Common additional restrictions on functions in θ include continuity,
differentiability, and/or monotonicity. These are behavioral restrictions,
not normalizations.

Lewbel (Boston College) Identification Zoo 2019 35 / 85



6.4 Examples: Some Special Regressor Models
Return to example 5 from section 3.3, now with covariates:
Model is Y = I (X + U > 0) for an unobserved U, where U ⊥ X | Z , and
X | Z is continuous.
φ is the joint distribution of Y ,X ,Z (from, e.g., IID DGP).
θ = FU |Z (u | z), the conditional distribution function of U given Z = z .

By construction:
E (Y | X = x ,Z = z) = Pr (X + U > 0 | X = x ,Z = z)
= Pr (x + U > 0 | Z = z) = 1− Pr (U ≤ −x | Z = z) =
1− FU |Z (−x | z)

So FU |Z (u | z) = 1− E (Y | X = −u,Z = z) is identified for values of u
that −X can equal.

Intuition of this special regressor (see Lewbel 1997, 2000, 2014):
Distribution of latent error U can be identified if model contains U + X ,
since variation in X moves Y the same way that variation in U does.
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Example: Set Identification of the Latent Mean.
For simplicity let Z be empty, want to identify E (U).
Suppose for now supp(U) is the whole real line.
Given Y = I (X + U > 0), can identify FU (−x).
If supp(X) is whole real line, then FU (u) is identified everywhere, and
E (U) =

∫ ∞
−∞ udFU (u).

But if supp(X) bounded to a ≤ X ≤ b, then FU (u) only identified for
−b ≤ u ≤ −a.
In this case, E (U) is NOT even set identified. It’s non-robust
identification.
No bounds on E (U), because FU could have mass arbitrarily far below −b
or above −a.

Other features of FU are point or set identified, like quantiles.
Set or point identification restored with assumptions about tails of U, e.g.
bounded support, or Magnac and Maurin’s (2007) tail symmetry.
If either a = −∞ or b = ∞, then we get bounds on E (U): if a = −∞,
E (U) ≤ b.
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Example: General Binary Choice With Special regressor.

Now let U = g(Z ) + e with g(Z ) = E (U | Z ) so
Y = I (X + g(Z ) + e > 0)
If g(Z ) were linear and e was normal, this would be probit.
Instead, g(Z ) is an unknown function, latent e has unknown distribution.
Note coeffi cient of X equals one is a scale normalization.
Assume "large support:" −X can equal any value U can be.

Then g(Z ) is identified, because then FU |Z (u | z) is identified for all u
and g (z) =

∫
supp(u) udFU |Z (u | z).

Needed large support because a mean g(Z ) = E (U | Z ) depends on the
entire distribution.

If instead had defined g(Z ) = med (U | Z ) would only have needed
support of −X to include a neighborhood of med (U | Z ) to identify g(Z ).
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Examples of other parameters we could identify in this model:

An elasticity function like ∂E (ln g(Z )) /∂ lnZ . Is identified given g .

The distribution of e conditional on Z . Is identified by
Fe |Z (e | Z ) = FU |Z (g(z) + e | z).

The average structural function (ASF) as in Blundell and Powell (2004),
defined as what the function E (Y | X ) would have been if the conditional
distribution of the error, Fe |Z , were replaced with its marginal distribution
Fe .

Here, given Fe |Z we can calculate the unconditional Fe ,
and then ASF =

∫
supp(e) I (X + g(Z ) + e > 0) dFe (e).

see Chen, Khan, and Tang (2016) and Lee and Li (2018).
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Example: Binary Choice With Random Coeffi cients.

preliminary result: linear model random coeffi cients:
Suppose observe iid continuous Ui ,Zi , so FU |Z is identified.
Suppose U = Z ′e where e is a vector of random coeffi cients.
Distribution Fe unknown. Is it nonparametrically identified?
Yes, with some regularity assumptions. See Beran and Millar (1994) and
Beran, Feuerverger, and Hall (1996).
Intuition: E (U | Z ) = Z ′E (e) identifies E (e),
E
(
U2 | Z

)
= Z ′E (ee ′)Z identifies E (ee ′), etc.

(real proof works through the characteristic function).

Lewbel (Boston College) Identification Zoo 2019 40 / 85



Example continued: Binary Choice With Random Coeffi cients.

Now, instead of linear, consider Y = I (Xex + Z ′ez > 0),
where ex and the vector ez are random coeffi cients.
Assume that ex > 0 and let e = ez/ex (this is a scale normalization).
Model is same as Y = I (X + Z ′e > 0)
e is now the vector of random coeffi cients.

Here U defined by U = Z ′e is NOT observed,
But now FU |Z is identified by special regressor X ,
So as in the linear model, Fe is identified.
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Ichimura and Thompson (1998) and Gautier and Kitamura (2013) directly
proved identification of random coeffi cients in Y = I (Xex + Z ′ez > 0).
Used a different scale normalization from above.
Special regressor random coeffi cients extended to multinomial choice
setting by Fox and Gandhi (2016).

Special regressor identification in other discrete choice models:
Games with discrete strategies: Lewbel and Tang (2014)
Semiparametric generalizations of BLP (Berry, Levinsohn, and Pakes
1995): Fox and Gandhi (2012), Berry and Haile (2014).
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Identification theorems for binary choice models that predate special
regressors, but that can be reinterpreted as special: Cosslett (1983),
Manski (1985), Horowitz (1992), and Lewbel (1997a).

In Berry and Haile (2014) the special regressors are hidden, they’re called

x (1)jt .
In Matzkin (2015), equations (2.2) and (2.4) make what she calls
’exclusive regressors’Xg special.
Gautier and Kitamura (2013) above also did not make the connection to
special regressor identification.

Special regressors surveys

Lewbel (2014) - survey provides derivations and intuition.
Lewbel, Dong, and Yang (2012) - provides comparisons between special
regressors, control functions, maximum likelihood, and linear probability
models.
Dong and Lewbel (2015) - provides simple ways to implement special
regressor estimation.
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7. Limited Forms of Identification

It’s often hard to prove point identification.

Possible responses:
1. Set identification (estimation and inference is hard).
2. Ignore the problem and assume identification (trouble if wrong).

A third way: Prove some more limited form of identification holds.

Then the leap of faith in assuming point identification is not as large.

Limited forms of identification include local identification and generic
identification. These are each necessary conditions for point identification.
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7.1 Local Identification

Point identification of θ0 requires that no other θ ∈ Θ be observationally
equivalent to θ0.

Since we don’t know what θ0 is, proving point identification requires
showing that no two different values θ and θ̃ in Θ be observationally
equivalent. Global identification.

In contrast, Local identification of θ0 means that there exists a
neighborhood of θ0 such that, for all values θ in this neighborhood (other
than the value θ0) θ0 is not observationally equivalent to θ.

Proving local identification requires showing that this holds replacing θ0
with any θ̃ ∈ Θ.

Note: Local identification differs from (and predates), the term local as
used in LATE (local average treatment effect). In LATE, local means the
mean parameter value for a particular subpopulation.
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Examples: Knowable, φ, is a continuous function m (x) for real, scalar x .
Suppose m (θ) = 0. Consider three possible cases:

Case a: m is strictly monotonic. Then θ is globally identified. Strict
monotonicity ensures only one value of θ can satisfy m (θ) = 0.

Case b: m is a J’th order polynomial for some integer J. Then θ typically
not globally identified. Up to J different values of θ that satisfy m (θ) = 0.
But θ is locally identified. A neighborhood of the true θ can be small
enough to exclude all other roots of m (x) = 0.

Case c: m is just continuous. Then θ might not even be locally identified,
because m (x) could equal zero for all values of x in some interval.
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Suppose Θ is an interval. If θ is set identified, and the set has a finite
number of elements, then θ is locally identified.

Similarly, consider an extremum identification problem, but we can’t rule
out the possibility of a finite number of local optima. Then one might still
show local identification.

More generally, in nonlinear models it is often easier to provide conditions
that ensure local rather than global identification.
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Local identification may be suffi cient in practice if we have enough
economic intuition about true parameter values to know that the correct θ
should lie in a particular region.

Example: In Lewbel (2012), a parameter is a coeffi cient in a simultaneous
system of equations, and the set has two elements, one positive and one
negative.

In this case have only local identification, unless economic model is
suffi cient to determine the sign of the parameter a priori (e.g., it is the
price coeffi cient in a supply equation).
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The notion of local identification is described by Fisher (1966) for linear
models.

Generalized to other nonlinear parametric models by Rothenberg (1971)
and Sargan (1983), as follows:

Let θ be a J - vector of structural parameters, and φ be set of reduced
form parameters

Assume the model implies r (φ (θ) , θ) = 0 for some known vector valued
function r . Let R (θ) = r (φ (θ) , θ).

A suffi cient condition for local identification of θ is that R (θ) be
differentiable and rank(∂R (θ) /∂θ) = J. Sargan (1983) calls violation of
this condition first order (lack of) identification.
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For parametric models that can (if identified) be estimated by maximum
likelihood, this rank condition is equivalent to information matrix at θ0
being nonsingular.

Newey and McFadden (1994) and Chernozhukov, Imbens, and Newey
(2007) give semiparametric extensions of the Sargan rank result.

Chen, Chernozhukov, Lee, and Newey (2014) extend to local identification
in models defined by conditional moment restrictions.

Chen and Santos (2015) provide a concept of local overidentification for a
class of semiparametric models.
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7.2 Generic Identification

Like local identification, generic identification is a necessary condition for
point identification that is sometimes easier to prove.

Let Θ̃ be a subset of Θ, defined as follows: Consider every θ ∈ Θ. If θ is
observationally equivalent to any other θ̃ ∈ Θ, then include θ in Θ̃.

If θ0 takes on a value in Θ̃ then θ0 is not point identified.

Global identification requires that Θ̃ be empty.

Following McManus (1992), the parameter θ is defined to be generically
identified if Θ̃ is a measure zero subset of Θ.
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Interpreting generic identification:

Imagine that nature chooses a value θ0 by randomly picking an element of
Θ.

Assume all elements of Θ are equally likely to be picked, so nature is
drawing from a uniform distribution over the elements of Θ.

Generic identification means that there is a zero probability that nature
chooses a value for θ0 that is not point identified.
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Example: Let φ be second moments of X ,Y . Model is Y = X ′β+ e with
E (e | X ) = 0.

β is generically identified if the probability is zero that nature chooses a
distribution function for X with the property that E (XX ′) is singular.

Generic identification is closely related to the order condition.

Consider a linear regression system where the order condition holds.
If a certain coeffi cient matrix B is nonsingular, then the rank condition
holds, giving identification.

In the set of all possible values for B, if the subset that is singular has
measure zero, then the order condition suffi ces for generic identification of
the model.
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Another example: suppose iid of Y ,X are observed with
X = X ∗ + U,
Y = X ∗β+ e,
unobserved model error e, unobserved measurement error U, and
unobserved true covariate X ∗ are mutually independent with mean zero.

Despite not having instruments, β is identified when Y ,X have any joint
distribution except a normal (Reiersøl 1950).

So β is generically identified if the set of possible Y ,X distributions is
suffi ciently large, e.g., if e could have been drawn from any continuous
distribution.
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Given the same independence of U, e, and X ∗, Schennach and Hu (2013)
show that the function m in the nonparametric regression model
Y = m (X ∗) + e is nonparametrically identified as long as m and the
distribution of e are not members of a certain parametric class of functions.

So again could say mutual independence of e, U, and X ∗ leads to generic
identification of m, as long as m could have been any smooth function or
if e could have been drawn from any smooth distribution.

In many social interactions models, showing point identification is
intractible, but one can establish generic identification. See, e.g., the
survey by Blume, Brock, Durlauf, and Ioannides (2011).
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8. Identification Concepts that Affect Inference

Identification preceeds estimation. We first show identification, then
consider properties of estimators.

However, sometimes the nature of the identification affects inference.

The way θ is identified may impact properties of any possible estimator θ̂.

These identification concepts that affect inference include weak
identification, Identification at infinity, and ill-posedness.

Note many previously discussed identification concepts also have
implications for estimation, including:
Extremum based identification,
set vs point identification.
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8.1 Weak vs. Strong Identification

Roughly, weak identification is when θ is, in a particular way, close to
being not point identified.

Both weakly identified and strongly identified parameters are point
identified (θ is uniquely determined given φ).

These should not, strictly speaking, be called identification.

These instead refer to specific diffi culties relating to asymptotic inference.

They’re called forms of identification because they arise from features of
the underlying model and associated DGP, and hence effect any possible
estimator we might propose.
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Historical notes on weak identification:

First recognition of weak identification may be this: "We can conjecture
that if the model is almost unidentifiable then in finite samples it behaves
in a way which is diffi cult to distinguish from the behavior of an exactly
unidentifiable model." - Sargan (1983)

Handbook of Econometrics chapters by Phillips (1983) and Rothenberg
(1984) hint at the issue.

Bound, Jaeger, and Baker (1995) specifically raise the issue of weak
instruments in an empirical context.

An early paper dealing with the problem econometrically is Staiger and
Stock (1997).

A survey of the weak instruments problem is Stock, Wright, and Yogo
(2002).
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Usual source of weak identification: low correlations among variables used
to attain identification, like instrument Z and covariate X .

Parameters are not identified if the correlation is zero. Identification is
weak (or the instruments Z are weak) when this correlation is close to
zero.

First stage of 2SLS is regress X on Z to get fitted values X̂ .

Some coeffi cients may be weakly identified if E
(
X̂X ′

)
is ill conditioned

(nearly singular).

More generally, in a GMM model weak identification may occur if the
moments used for estimation yield noisy or generally uninformative
estimates of the underlying parameters.
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Key feature of weak identification is NOT imprecisely estimates with large
standard errors (though they do have that feature).

Rather, standard asymptotics poorly approximate the true precision of
parameter estimates when identification is weak (and higher order
asymptotics don’t help, since they too depend on precise parameter
estimates).

Recall all asymptotics are merely approximations to true small sample
distributions.

Compare: nonparametric regressions are imprecise with large standard
errors (due to slow convergence rates by the curse of dimensionality).

But nonparametric regressions are not weakly identified, because standard
asymptotic theory (e.g., a CLT with slow rates) adequately approximates
their true estimation precision.
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Suppose that θ is identified, and can be estimated at rate root-n using an
extremum estimator (maximizing some objective function, e.g., least
squares or GMM or maximum likelihood).

If some parameters are weakly identified, then any objective function used
to identify and estimate them will be close to flat in some directions.

Flatness yields imprecision, but more relevantly, flatness also means that
standard errors and t-stats (either analytic or bootstrapped) will be poorly
estimated. They depend on the inverse of a matrix of derivatives of the
objective function. Flatness makes this matrix close to singular.
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Weak identification resembles multicollinearity, which in linear regression
means E (XX ′) is ill-conditioned.

Like multicollinearity, it is not that parameters either "are" or "are not"
weakly identified. Weakness of identification depends on the sample size.
For big enough n, standard asymptotic approximations must become valid.

This is why weakness of identification is often judged by rules of thumb
rather than formal tests.

Staiger and Stock (1997) suggest the rule of thumb for linear two stage
least squares models that should be concerned about potential weak
instruments if the F-statistic on the excluded regressors in the first stage is
less than 10.
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Two separate things:
1. Parameters that are weakly identified at reasonable sample sizes.
2. The models econometricians use to deal with weak identification.

In real data, weak identification disappears when n gets suffi ciently large.
This makes it diffi cult to provide a general asymptotic theory to deal with
the problem.

Econometrician’s trick is an alternative asymptotic theory known as
drifting parameter models.
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Consider Y = θX + U and X = βZ + V , data are iid observations of
scalars Y ,X ,Z . Errors E (UZ ) = E (VZ ) = 0, for simplicity all variables
are mean zero.

If β 6= 0, then θ is identified by θ = E (ZY ) /E (ZX ), corresponding to
standard IV. Since E (ZX ) = βE

(
Z 2
)
, if β is close to zero then both

E (ZY ) and E (ZX ) are close to zero, making θ weakly identified. But
how close is close?

The bigger the sample size, the more accurately E (ZX ), and E (ZY ) can
be estimated, and hence the closer β can be to zero without causing
trouble.

To capture this idea asymptotically, pretend true β is not a constant, but
instead is βn = bn

−1/2. The larger n gets, the smaller βn becomes.

This gives us a model that has the weak identification problem at all
sample sizes, and so can be analyzed asymptotically.
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If it were true that βn = bn
−1/2, then b and hence βn would generally not

be identified, so tests and confidence regions for θ have been developed
that are robust to weak instruments, that is, they do not depend on
estimating βn. See, e,g., Andrews, Moreira, and Stock (2006) for an
overview of such methods.

In the literature, when we say θ "is" weakly identified, we mean we are
providing asymptotic theory for inference that allows for identification to
be based on a parameter that drifts towards zero.

So in the above model would say θ is strongly identified when the
asymptotics we use are based on βn = β, and would say θ is weakly
identified when the asymptotics used for inference are based on (or at least
allow for) βn = bn

−1/2.
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Usually, we don’t believe that parameters are actually drifting towards zero
as n grows. Rather, when we assume weak identification, we’re expressing
the belief that the drifting parameter model provides better asymptotic
approximations to the true distribution than standard asymptotics.

Other related terms include semi-strong identification and
nonstandard-weak identification. See, e.g., Andrews and Guggenberger
(2014). These and other variants have parameters drift to zero at other
rates, or have models with a mix of drifting, nondrifting, and purely
unidentified parameters.
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8.2 Identification at infinity or zero; Irregular and Thin set
identification

Based on Chamberlain (1986) and Heckman (1990) Identification at
infinity is when identification is based on the distribution of data at points
where one or more variables goes to infinity.

Suppose iid scalar random variables Y ,D,Z .
Assume Y = Y ∗D, Z independent of Y ∗,
Y ∗ is a latent unobserved variable
D is binary, limz→∞ E (D | Z = z) = 1.
The goal is identification and estimation of θ = E (Y ∗).

This is a selection model, Y is selected (observed) only when D = 1. So
D could be a treatment indicator, Y ∗ is the outcome if one is treated, θ is
the average outcome if everyone were treated, and Z is an observed
variable (an instrument) that affects the probability of treatment, with the
probability of treatment going to one as Z goes to infinity.
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Y = Y ∗D, Z ⊥ Y ∗, Y ∗ is latent, D is binary,
limz→∞ E (D | Z = z) = 1, θ = E (Y ∗).

D and Y are correlated, so θ is identified only by limz→∞ E (Y | Z = z).

Y ∗ and D may be correlated, E (Y ) confounds the two. But everyone who
has Z infinite is treated, so looking at the mean of just those people
eliminates the problem.

In real data we would estimate θ as the average value of Y just for people
that have Z > c for some chosen c , and then let c → ∞ as the sample
size grows (Heckman 1990 and Andrews and Schafgans 1998)

Or could estimate θ as a weighted average of Y with weights that get
arbitrarily large as Z gets arbitrarily large (e.g., Lewbel 2007b).
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First shown by Chamberlain (1986): Estimators based on identification at
infinity usually converge slower than root-n.

Same estimation problem arises whenever identification is based on a Z
taking on a value or range of values that has probability zero.

Kahn and Tamer (2010) call this thin set identification.

Example: Manski’s (1985) and Horowitz’s (1992) binary choice model,
estimated by maximum score methods, is thin set identified. It gets
identification only from info at one point (the median) of a continuously
distributed variable.
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Irregular identification is when thin set identification leads to slower than
root-n rates of estimation. See Kahn and Tamer (2010) and Graham and
Powell (2012).

Not all thin set identified or identification at infinity parameters are
irregular. For example, estimates of θ = E (Y ∗) in the selection problem
can converge at rate root-n if Z has a strictly positive probability of
equaling infinity.

More subtly, the ’impossibility’theorems of both Chamberlin and Khan
and Tamer showing that some thin set identified models cannot converge
at rate root n assume that the variables in the DGP have finite variances.

Thick tails (infinite variance) can overcome the impossibility. This is one
way that the Lewbel (2000) special regressor estimator can converge at
rate root n.
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Irregular identification is not the same as weak identification.

Irregularly identified parameters converge slowly for essentially the same
reasons that nonparametric regressions converge slowly; at each point
they’re based on a vanishingly small subset of the entire data set.

Also like nonparametric regression, given suitable regularity conditions,
standard methods can usually be used to derive asymptotic theory for
irregularly identified parameters.

However, the rates of convergence of thin set identified parameters can
vary widely, from extremely slow up to root n, depending on details
regarding the shape of the density function in the neighborhood of the
identifying point.
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Sometimes it’s easier to prove a parameter is identified by looking at a
thin set, but the parameters may still be strongly identified, because the
model and φ contain more information about the parameter than is being
used in the proof.

Example: Heckman and Honore (1989) showed that without
parameterizing error distributions, a competing risks model is identified by
data where covariates can drive individual risks to zero. Lee and Lewbel
(2013) later showed that this model is actually strongly identified, using
information over the entire DGP, not just where individual risks go to zero.

Another class of examples of thin set identification is what Hill and
Renault (2011) call eventual identification. These are models where
asymptotic trimming is used to obtain limit normal inference based on
means of thick tailed distributions.
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Notes on irregular identification:

Identification at infinity of the selection model given above is discussed by
Chamberlain (1986), Heckman (1990), Andrews and Schafgans (1998),
Lewbel (2007), and Khan and Tamer (2010).

Khan and Tamer point out that the average treatment effect model of
Hahn (1998) and Hirano, Imbens and Ridder (2003) is generally irregularly
identified, and so will not attain the parametric root n rates derived by
those authors unless the instrument has thick tails

Similarly, Lewbel’s (2000) special regressor estimator for binary choice
requires the special regressor to have thick tails (or other restrictions) to
avoid being irregular.

Lewbel (Boston College) Identification Zoo 2019 73 / 85



7.3 Ill-Posed Identification

Let θ be point identified from knowable information φ in a model M.
Ill-posedness arises when the connection from φ to θ is not suffi ciently
smooth.

Ill-posedness is an identification concept like weak identification or
identification at infinity: it’s a feature of θ, φ, and M, and hence a
property of the population, that affects inference for any estimator one
might propose..

The concept of well-posedness (the opposite of ill-posedness) is due to
Hadamard (1923). See Horowitz (2014) for a survey.
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Example: iid observations of W , so φ is the distribution function of W ,
denote it F (w).

Glivenko—Cantelli theorem: F̂ (w) = ∑n
i=1 I (Wi ≤ w) /n is uniformly

consistent, asymptotically n1/2 normal estimator of F .

Suppose θ = g (F ) for some known g . Then θ is (point) identified.

If g is continuous, then θ̂ = g
(
φ̂
)
is consistent.

If g is not continuous, then θ̂ is generally not consistent, and we have
ill-posedness.
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When ill-posed, consistent θ̂ requires "regularization," smoothing out the
discontinuity in g .
Regularization introduces bias, and consistency needs a way to
asymptotically shrink this bias to zero.
Result: ill-posedness leads to slower convergence rates.

Example:
Estimation of the density function f (w) = dF (w) /dw .
There is not a continuous g such that f = g (F ).
Can’t take derivative of F̂ (w) = ∑n

i=1 I (Wi ≤ w) /n

Rosenblatt-Parzen Kernel density estimation is regularization. Example:

f̂ (w) =
(
F̂ (w + b)− F̂ (w − b)

)
/ (2b). Need b → 0 as n→ ∞.

F̂ converges n1/2, kernel f̂ is rate n2/5.
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Nonparametric regression (kernel or sieve based) is similarly ill-posed.
Regularization is kernel and bandwidth choice, or in the selection of basis
functions and the number of terms to include in nonparametric sieve
estimators.

In some problems, ill-posedness is severe, causing very slow convergence
rates, like ln (n).

Examples of problems that are often severely ill-posed are:

Nonparametric instrumental variables, e.g., Newey and Powell (2003),

Probability density estimation in models containing mismeasured variables.

Random coeffi cient models where the distribution of the random
coeffi cients is nonparametrically estimated.
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7.4 Bayesian and Essential Identification

Point identification is sometimes called frequentist identification or
sampling identification, to contrast with Bayesian identification.

Bayesian: parameter θ is random, has a prior and a posterior.

Lindley (1971): point identification is irrelevant for Bayesians: has no
effect on whether one can specify a prior and obtain a poserior. But
Poirier (1998) discusses implications of failure of point identification for
updating priors.

But there are still notions of identification that are relevant for Bayes
estimation.
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Gustafson (2005): Defines θ to be essentially identified (with respect to a
given prior) if

1. θ is not point identified, but

2. θ would be point identified if the model included the additional
assumption that θ is drawn from the given prior distribution.

Intuition: Unidentified parameters can become identified by adding
restrictions to a model.
Imposing that θ be a draw from a given distribution function could be an
example of such a restriction.

Gustafson shows that the behavior of Bayes estimators can depend heavily
on whether they are essentially identified or not.
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Florens, Mouchart, and Rolin (1990), Florens and Simoni (2011): θ is
Bayes identified if its posterior differs from its prior distribution.

So θ is Bayes identified if data provides any info that updates the prior.

Point identification implies Bayes identification, because then the
population updates the prior to a degenerate distribution.
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Set identified parameters are also typically Bayes identified. Enough info
to confine θ to a set should be enough to update a prior.

Example: Moon and Schorfheide (2012): When θ is set identified, the
support of the posterior will typically lie inside the identified set.

Intuition: The data tells us nothing about where θ could lie inside the
identified set, but the prior provides information inside the set, and the
posterior reflects that information.

See Gustafson (2015) book for more on Bayes estimation in partially
identified models.
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9. Conclusions

Why is identification a rapidly growing area within econometrics (as
evidenced by the growing terminology)?

The rise of big data and computation creating ever more complicated
models needing identification.

Examples of increasingly complex models: games and auction models,
social interactions and network models, forward looking dynamic models,
and models with nonseparable errors assigning behavioral meaning to
unobservables.

At the other extreme, the so-called credibility revolution: search for
sources of randomization in constructed or natural experiments.

Like structural models, causal models are becoming more sophisticated. A
similar search for novel methods of identification exists in the reduced form
literature. Regression kink design and the construction of synthetic
controls are recent examples.
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Unlike statistical inference, there is not a large body of general tools or
techniques for proving identification.

Identification theorems tend to be highly model specific.

Some general techniques for proving identification:
Control function methods as in Blundell and Powell (2004),
Special regressors as in Lewbel (2000),
Contraction mappings, fixed point theorems as in Berry, Levinsohn, and
Pakes (1995),
Completeness as in Newey and Powell (2003),
Observational equivalence characterizations as in Matzkin (2005).
Characterizations of moments over unobservables as in Schennach (2014).

Development of more such general techniques and principles would be a
valuable area for future research.
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Identification, big data, and machine learning

Varian (2014) says, "In this period of “big data,” it seems strange to focus
on sampling uncertainty, which tends to be small with large datasets, while
completely ignoring model uncertainty, which may be quite large."

In big data, the observed sample is so large that it’s treated as if it were
the population.

Identification deals precisely with what can be learned given the
population, i.e., given big data.

A valuable area for future research: connections between methods used to
establish identification and techniques used to analyze big data.
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Bayesian identification, causal identification, essential identification,
eventual identification, exact identification, first order identification,
frequentist identification, generic identification, global identification,
identification arrangement, identification at infinity, identification by
construction, identification of bounds, ill-posed identification, irregular
identification, local identification, nearly-weak identification,
nonparametric identification, non-robust identification, nonstandard weak
identification, overidentification, parametric identification, partial
identification, point identification, sampling identification, semiparametric
identification, semi-strong identification, set identification, strong
identification, structural identification, thin-set identification,
underidentification, and weak identification.

Given the increasing recognition of the importance of identification in
econometrics, the Identification zoo is likely to keep expanding.
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