


Goal: Understanding the basic ideas behind the econometrics revolution in
nonparametric and semparametric methods.

This talk will focus on cross section methods. Think of data here as i.i.d.
(independently, identically distributed observations).

Warning: This lecture will NOT be mathematically rigorous. Some of the
definitions, formulas and derivations are incomplete (an expert might just
call them wrong). My goal here will be to make the ideas and methods as
clear as possible, favoring clarity of concepts over detailed technical
accuracy.

Will not go through empirical applications, but will discuss relevant
considerations for applying these estimators.
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Examples:

Linear: Yi = X ′i β+ ei
Parametric: Yi = G (Xi , θ) + ei
finite dimensional parameter θ, β

Nonparametric: Yi = m (Xi ) + ei
infinite dimensional parameter m ()

Semiparametric: α = E
(

∂m(Xi )
∂X

)
Semiparametric: Yi = m (Xi ) + Z ′i γ+ ei
finite parameter of interest, infinite dimensional nuisance parameter
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Why nonparametrics?
Statistical lit: don’t need theories.
Most economic theories do not imply specific functional forms.
Can provide guidance for parametric models.

Why not nonparametrics?
Curse of Dimensionality

Why semiparametrics?
Sometimes overcomes the curse
Focus on features of interest.
More popular in econometrics than in statistics (we have finite dimensional
features of interest).
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X an r.v. (random variable, for now a scalar).
x a value X could take on.
Xi for i = 1, ..., n are iid rv’s.
xi for i = 1, ..., n observations, the sample.

X is drawn from a distribution function F (X )

each Xi is a r.v. with distribution F

Lewbel (Institute) nonparametrics
a mini course, revised 2012

/ 57



F (x) = Pr (X ≤ x), a function.

F (x) = true distribution function of each Xi , evaluated at x .
If X continuous, F (x) is a (usually) S shaped curve from 0 to 1.

F̂ (x) = empirical distribution function, evaluated at x .

F̂ (x) = 1
n ∑n

i=1 1 (Xi ≤ x)
= fraction of data less than x .

Graph F̂ (x) against x : a step function with n steps.

F̂ (x) is a nonparametric estimator of F (x).
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F̂ (x) = 1
n ∑n

i=1 1 (Xi ≤ x)
Is F̂ (x) an unbiased estimator of F (x)?

Recall what unbiasedness means:
Suppose we had an estimator θ̂ of a vector θ.
Imagine we had very many data sets, instead of just one.
Calculate θ̂ using each data set separately.
θ̂ is unbiased if the average of the estimates θ̂, averaged across the data
sets, equals the true θ. This needs to hold for each element θj of θ.

The nonparametric estimator F̂ (x) is unbiased if the average of F̂ (x),
averaged across an infinite number of data sets, equals the true F (x), for
every possible x .

Here x is like an index, it just refers to one ’element’of the function F ()
(the element we happen to be estimating), just like j in θj indexes one
element of a vector θ in a parametric model.
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For every real number x , F̂ (x) is unbiased:

E
[
F̂ (x)

]
= E

[
1
n

n

∑
i=1
1 (Xi ≤ x)

]

=
1
n

n

∑
i=1
E [1 (Xi ≤ x)]

= E [1 (Xi ≤ x)] = E [1 (X ≤ x)]

=
∫ ∞

X=−∞
1 (X ≤ x) f (X ) dX =

∫ x

X=−∞
f (X ) dX

= F (X ) |xX=−∞ = [F (x)− F (−∞)]
= [F (x)− 0] = F (x)

Notice the Xi’s are the random variables we are averaging over by taking
the expectation. We are not averaging across x values. Again, x is like an
index, it just refers to an ’element’of the function F (), just like j in θj
indexes one element of a vector θ.
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E
[
F̂ (x)

]
= E

[
1
n

n

∑
i=1
1 (Xi ≤ x)

]
= F (x)

In the same way, can calculate

var
[
F̂ (x)

]
= E

[(
F̂ (x)− F (x)

)2]

=

[
1
n

n

∑
i=1
E [1 (Xi ≤ x)− F (x)]

]2
=
1
n
F (x) [1− F (x)]

and F̂ (x) is an average, so by the central limit theorem (CLT),

√
n
(
F̂ (x)− F (x)

)
→d N [0,F (x) [1− F (x)]]

F̂ (x) is root-n-CAN: consistent, asymptotically normal, at rate root-n.
True at every point (every real number) x .
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Now suppose we want to estimate f (x), the pdf (probability density
function) of X , at each point x .

If parameterize f (x , θ), do MLE.

Or can approximate f (x) by a histogram:

For a small number (binwidth) h, look at

1
n

n

∑
i=1
1 (x − h ≤ xi ≤ x + h)

This is the fraction of observations in our sample near x (within distance h
of x).

We will now construct a formal estimator, similar to the histogram.
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F̂ (x + h)− F̂ (x − h) =
1
n

n

∑
i=1
1 (x − h ≤ Xi ≤ x + h)

=
1
n

n

∑
i=1
1
(
|x − Xi

h
| ≤ 1

)

f (x) =
dF (x)
dx

= lim
h→0

F (x + h)− F (x − h)
2h

≈ F (x + h)− F (x − h)
2h

for small h

Suggests the estimator, choose a small h and let:

f̂ (x) =
F̂ (x + h)− F̂ (x − h)

2h
=
1
nh

n

∑
i=1

1
2
1
(
|x − Xi

h
| ≤ 1

)
Estimator depends on h, so call it f̂h (x).
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f̂h (x) =
1
nh

n

∑
i=1

1
2
1
(
|x − Xi

h
| ≤ 1

)
Can write this as

f̂h (x) =
1
nh

n

∑
i=1
K
(
x − Xi
h

)
where K (u) =

1
2
1 (|u| ≤ 1)

so K (u) equals a uniform density on [−1, 1].

This f̂h is a little ugly: Discontinuous in x . Also, gives equal weight to all
observations within h of x , zero weight to those further.

Consider other K (u) functions to get a nicer estimator. e.g., observations
Xi closest to x are most informative about f () at x , so could give those
the most weight.
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Nadayara-Watson Kernel density estimator:

f̂h (x) =
1
nh

n

∑
i=1
K
(
x − Xi
h

)

where you choose a kernel or window function K (u) that is continuous
almost everywhere with

∫ ∞
−∞ K (u) du = 1 like a density. K is usually

symmetric and has a mode at zero. h is called the binwidth or bandwidth.

Popular kernels are gaussian (normal) and Epanechikov (quadratic)

K (u) =
1√
2π
e−u

2/2

K (u) =
3
4

(
1− u2

)
1 (|u| ≤ 1)

Is f̂h (x) unbiased like F̂ (x) was? Assume K (u) = K (−u), a symmetric
kernel. Also means a ’second order’kernel:

∫ ∞
−∞ u

pK (u) du = 0 for all
positive p < 2.
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Again average over Xi , while x just indexes value of f are estimating.

E
[
f̂h (x)

]
= E

[
1
nh

n

∑
i=1
K
(
x − Xi
h

)]

= E
[
1
h
K
(
x − Xi
h

)]
=
∫ ∞

Xi=−∞

1
h
K
(
x − Xi
h

)
f (Xi ) dXi

Change of variables: u = − x−Xih , Xi = x + uh, Jacobian = h.Then

E
[
f̂h (x)

]
=

∫ ∞

u=−∞

1
h
K (u) f (x + uh) hdu

≈
∫ ∞

u=−∞

1
h
K (u)

[
f (x) + uh

df (x)
dx

+
u2h2

2
d2f (x)
dx2

]
hdu

= f (x)
∫ ∞

u=−∞
K (u) du + h

df (x)
dx

∫ ∞

u=−∞
uK (u) du

+h2
d2f (x)
dx2

∫ ∞

u=−∞
u2K (u) du = f (x) + h2b (x)

E
[
f̂h (x)

]
is biased, bias is approximately h2b (x)
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bias
[
f̂h (x)

]
≈ h2b (x) , b (x) =

d2f (x)
dx2

∫ ∞

u=−∞
u2K (u) du

Similarly,

var
[
f̂h (x)

]
≈ 1
nh
v (x) , v (x) = f (x)

∫ ∞

u=−∞
[K (u)]2 du

Mean squared error (MSE) trade off:
Bias small if h small, variance small if nh is big.
Can choose h to minimize MSE:

MSE ≈ h4b2 (x) +
1
nh
v (x)

best h ≈ v (x)
4b2 (x)

n−1/5

Best h→ 0 as n→ ∞. But how choose h? Vary by x?
Two step estimation or optimal for parametric f or cross validation.
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f̂h (x) is an average, so apply central limit theorem (CLT)

f̂h (x) =
1
nh

n

∑
i=1
K
(
x − Xi
h

)

n1/2
[
f̂h (x)− E

(
f̂h (x)

)]
→ d N

[
0, var

(
1
h
K
(
x − X
h

))]
n1/2

[
f̂h (x)− f (x)− h2b (x)

]
≈ N

[
0,
1
h
v (x)

]
Problem: if h→ 0 then v (x) /h blows up. Fix: multiply by h1/2

(nh)1/2
[
f̂h (x)− f (x)− h2b (x)

]
≈ N [0, v (x)]

Min MSE had h proportional to n−1/5, so (nh)1/2 is proportional to n2/5.

Under some smoothness assumptions, n2/5 is the fastest "rate of
convergence" for nonparametric density estimation.

Note: for more rigor, need to keep track of and bound remainder terms,
and use a CLT that allows h to depend on n.
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Extensions: type of convergence:

Pointwise convergence (consistency): plim|f̂h (x)− f (x) | = 0
Uniform convergence (consistency): plim supx |f̂h (x)− f (x) | = 0

Similarly have derived pointwise limiting distribution, means pointwise
confidence intervals. can also construct uniform confidence intervals.

Extensions: Density derivatives:

df̂h (x)
dx

=
1
nh

n

∑
i=1

dK
(
x−Xi
h

)
dx

=
1
nh2

n

∑
i=1
K ′
(
x − Xi
h

)
Consistency requires nh2 → ∞ instead of nh→ ∞, must have h→ 0
slower, so get a slower optimal rate of convergence than for f̂h (x).
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Extensions: Bias reduction

If f is smoother (more derivatives). recall

E
[
f̂h (x)

]
≈

∫ ∞

u=−∞

1
h
K (u)

[
f (x) + uh

df (x)
dx

+
u2h2

2
d2f (x)
dx

]
hdu

≈ f (x) + h2b (x)

If
∫ ∞
u=−∞ u

pK (u) du = 0 for p = 1, 2, 3 (a fourth order kernel), can Taylor

expand to four terms, get bias = E
[
f̂h (x)

]
− f (x) ≈ h4B (x). Variance

is still n−1h−1v (x), so best MSE is now rate n−4/9. But: higher order
kernels have negative K (u) regions, are poorly behaved numerically unless
n is huge.
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Extensions: Multivariate Density Estimation

Joint density f (y , x) of Y and X can be estimated as

f̂h (y , x) =
1
nh2

n

∑
i=1
K
(
y − Yi
h

)
K
(
x − Xi
h

)
For a J dimensional density, bias is still proportional to h2, but variance is
proportional to n−1h−J . So optimal MSE has h proportional
to n−1/(J+4), and optimal rate of convergence is n2/(J+4).

The "curse of dimensionality"

For parametric models, the more parameters we estimate, the bigger the
variance, but the rate stays root-n. Multiply n by 4, the standard errors
are halved.

For nonparametrics, the higher the dimension of the function, the slower is
the rate of convergence. To estimate a J dimensional function (without
higher order kernels), must multiply n by 2((J+4)/2) to halve the standard
errors. E.g., with J = 2, you must multiply n by 8 to halve the standard
errors.
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Nonparametric Regression:
iid (Yi , Xi ). draws from joint density f (Y ,X )
Let m (X ) = E (Y | X ) . Then Y = m (X ) + e, E (e | X ) = 0.

Goal, estimate m(x) at any point x . Can, e.g., evaluate m̂ (x) at a fine
grid of points x , and graph it. Local average estimator:

m (x) = E (Y | X = x) ≈ E (Y | x − h ≤ X ≤ x + h)

≈ ∑n
i=1 Yi1 (x − h ≤ Xi ≤ x + h)

∑n
i=1 1 (x − h ≤ Xi ≤ x + h)

=
∑n
i=1 Yi1

(
| x−Xih | ≤ 1

)
∑n
i=1 1

(
| x−Xih | ≤ 1

)
If X is discrete, can let h = 0, otherwise let h be small nonzero.
Like a histogram above uses a uniform kernel. A kernel regression is:

m̂h (x) =
∑n
i=1 YiK

(
x−Xi
h

)
∑n
i=1 K

(
x−Xi
h

)
which is a kernel function weighted average of Yi . The closer Xi is to x ,
the larger the weight K [(x − Xi ) /h].
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Another way to get the kernel regression:

m (x) = E (Y | X = x) =
∫ ∞

y=−∞
yfy |x (y | x) dy

=
∫ ∞

y=−∞
y
fy ,x (y , x)
fx (x)

dy =

∫ ∞
y=−∞ yfy ,x (y , x) dy

fx (x)

m̂h (x) =

∫ ∞
y=−∞ y f̂y ,x (y , x) dy

f̂x (x)
=

∫ ∞
y=−∞ y

1
nh2 ∑n

i=1 K
(
y−Yi
h

)
K
(
x−Xi
h

)
1
nh ∑n

i=1 K
(
x−Xi
h

)
=

1
nh ∑n

i=1 K
(
x−Xi
h

) [
1
h

∫ ∞
y=−∞ yK

(
y−Yi
h

)
dy
]

1
nh ∑n

i=1 K
(
x−Xi
h

)
=

1
nh ∑n

i=1 K
(
x−Xi
h

) [
1
h

∫ ∞
u=−∞ (hu + Yi )K (u) hdu

]
1
nh ∑n

i=1 K
(
x−Xi
h

)
and

1
h

∫ ∞

u=−∞
(hu + Yi )K (u) hdu = Yi
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Properties of kernel regressions:

m (x) = E (Y | X = x) , m̂ (x) =
∑n
i=1 YiK

(
x−Xi
h

)
∑n
i=1 K

(
x−Xi
h

)
h determines smoothness of m̂ (x), roughly, size of neighborhood around x
over which data are averaged.

If h = ∞ then m̂ (x) = Y . Complete averaging.

If h = 0, then m̂ (x) = 0
0 if x 6= Xi for some i , else m̂ (x) = Yi . No

averaging.

With big h, m̂ (x) is close to a flat line at Y . With a tiny h, m̂ (x)
erratically jumps around, between almost going through each point
(Yi , Xi )
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Properties of kernel regressions:

Like kernel densities, bias = E [m̂h (x)]−m (x) ≈ h2B (x) for some B (x),
var [m̂h (x)] ≈ n−1h−1V (x),
V (x) =

(∫ ∞
u=−∞ [K (u)]

2 du
)
E
(
e2 | X = x

)
/fx (x)

(nh)1/2 [m̂h (x)−m (x)− h2B (x)] ≈ N [0,V (x)]
Again optimal is h proportional to n−1/5, so rate (nh)1/2 is n2/5.

As before, these give pointwise confidence intervals.

As before, possible to calculate a uniform confidence interval, a sleeve
around m̂h (x).

As before, with more smoothness can use higher order kernels to converge
faster in theory, usually numerically bad in practice unless n is huge.
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Multivariate kernel regression

iid (Yi , Xi , Zi ). draws from joint density f (Y ,X ,Z )
Let m (X ,Z ) = E (Y | X ,Z ) .

m̂h (x , z) =
∑n
i=1 YiK

(
x−Xi
h

)
K
(
z−Zi
h

)
∑n
i=1 K

(
x−Xi
h

)
K
(
z−Zi
h

)
For Y conditional on a J vector (above is J = 2) as with joint density
estimation get bias still proportional to h2, variance is proportional to
n−1h−J , optimal MSE has h proportional to n−1/(J+4), and optimal rate
of convergence is n2/(J+4).

The "curse of dimensionality" is back.
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Bandwidth choice for kernel regression:
method of cross-validation.
If we chose h to minimize sum of squared errors ∑n

i=1 (Yi − m̂h (Xi ))
2,

would get h = 0.

Instead, let m̂hi (x) = kernel regression of Y on X , leaving out observation
i , using bandwidth h.

For example:

m̂h1 (x) =
∑n
i=2 YiK

(
x−Xi
h

)
∑n
i=2 K

(
x−Xi
h

)
Similarly have m̂h2 (x), m̂h2 (x), etc.,.
For each observation i , leave out data point i and see how well m̂ fits that
data point. Error is Yi − m̂hi (Xi ). Cross validation is choose h to
minimize sum of squared of these errors. h minimizes:

n

∑
i=1
(Yi − m̂hi (Xi ))2
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Extension: Varying bandwidth
Can let h vary by x . Where data are sparse (e.g., in the tails of the density
of X ), choose large h. where data are dense, choose small h.

Example is "k nearest neighbor" estimation:
at each x , choose h so that only the k observations having Xi closest to x
are used.

Extension: Regression derivative:

dm̂hi (x )
dx is an estimator of dm(x )dx = dE (Y |X=x )

dx .
If Y and X are log data, this is the elasticity of Y with respect to X at
point x .
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Extension: Local Linear estimation

Kernel regression same as regressing Y on a constant, using data near x :
For any x , the kernel regression estimator m̂(x) equals the m that
minimizes

n

∑
i=1
(Yi −m)2 K

(
x − Xi
h

)
First order condition: ∑n

i=1 −2 (Yi −m)K
(
x−Xi
h

)
= 0. Solve for m.

Instead regress Y on a constant and on X , using data near x :
let M̂(x) and D̂(x) equal the M and D that minimizes

n

∑
i=1
(Yi −M − (x − Xi )D)2 K

(
x − Xi
h

)

can show M̂(x)→ E (Y | X = x), and D̂(x)→ dE (Y |X=x )
dx = dM (x )

dx
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Extension: local polynomial regression

Instead of fitting a different line near each point x (local linear) can fit a
local quadratic, or cubic, or polynomial.

Why consider local linear or local polynomial?:
Speeds convergence rates, similar to higher order kernels.
Automatically provides derivative estimates
If true m(x) is close to polynomial, then improves the fit.
Can behave better near boundaries of the data.

Downside: more complicated
can be more numerically unstable, more sensitive to outliers.
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Other nonparametric regression estimators:

Series estimators.
If m(x) is smooth enough, then there exists a0, a1, a2, ... such that
m(x) = ∑∞

j=0 ajx
j .

So define m̂J (x) = ∑J
j=0 âjx

j .where âj’s are estimated by ordinary least
squares regression of Yi on 1, Xi , X 2i ,...,X

J
i ,

Let J → ∞ and n/J → ∞, so add terms slowly as n→ ∞. Then the
average number of observations per coeffi cient → ∞, and get m̂J (x)
consistently estimates m(x).

J is like a bandwidth, choice of J trades off bias and variance.

Careful interpreting: what each âj means depends on J. Best to focus on

m̂J (x) or
dm̂J (x )
dx , not each âj .
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Why series estimators?
Matches what practitioners often do - fit a line if have a small data set, try
adding quadratic terms with larger n.
Easy to do and understand: It’s ordinary regression.

Why not do series estimation?
Asymptotic distribution theory not as well worked out as kernels.
Unlike kernels, that fit near each x locally, series can jump around:
m̂h (Xi ) gets closer to Yi as h→ 0. But m̂J (Xi ) can jump arbitrarily far
away from Yi as J increases. (think how a fitted regression curve can
move when you change specification from linear to quadratic, or quadratic
to cubic).
Small changes in h mean small change in fit. Small changes in J can
dramatically change the fit. So series can be more sensitive to choice of J.
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Extension: multivariate series regressions:
m(x , z) = E (Y | X = x ,Z = z)
m̂J (x) = ∑J

j=0 ∑J
k=0 âjkx

jzk

Extension: other series regressions:
m̂J (x) = ∑J

j=0 âjφj (x)
φ1 (x), φ2 (x), φ3 (x),... are fourier or other series (basis functions that
span the space).
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Extension: sieve estimators:
Let A1, A2,., AJ ,.. be a sequence of vectors that get longer as J increases.
Let ΦJ (AJ , x) for J = 1, 2, ... be a sequence of functions that get more
complicated as J grows.
Assume there exists a sequence of values for AJ such that
m (x) = limj→∞ Φj (Aj , x).

m̂J (x) = Φj

(
Âj , x

)
where Âj obtained by regressing Yi on Φj (Aj , x).
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Example sieve: Series m̂J (x) = Φj

(
Âj , x

)
= ∑J

j=0 âjx
j

Example sieve: Neural Networks:

m̂J (x) =
J

∑
j=0
âjg

(
x ′B̂j

)
or m̂J (x) =

K

∑
k=0

ĉkg

(
J

∑
j=0
âjkg

(
x ′B̂j

))

above are ’single layer’and ’two layer’neural nets.
g is a ’squasher’function (like arctan, or a distribution function) that
maps real line to 0-1 interval.
Each g (•) represents the action of a neuron.
Fits coeffi cients by nonlinear least squares. Regresses Yi on
∑J
j=0 ajg (X

′
i Bj )

’Learning’is just updating the nonlinear least squares coeffi cients as n
increases.
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Semiparametric Estimation. Roughly, finite parameter (vector) of interest,
and infinite dimensional other parameters (typically unknown functions).

Examples: Binary choice Y = 1 (X ′β+ e ≥ 0)
β, fe unknown.

Linear regression Y = X ′β+ e looks semiparametric with β, fe unknown,
but isn’t, since can rewrite as E (Y | X ) = X ′β. Whether a problem is
semiparametric depends on ’how much’the unknown infinite dimensional
parameters affect the finite one.

Partly linear model: Y = m (X ) + Z ′γ+ e
so E (Y | X ,Z ) = m (X ) + Z ′γ
γ, m unknown

Average derivative estimation: Y = m (X ) + e, E (Y | X ) = m (X ),
α = E

(
∂m(X )

∂X

)
α, m unknown
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Many Semiparametric estimators can be written as averages of functions
of nonparametric estimators (e.g., average derivative estimation).

Let m̂h (x) be a nonparametric (kernel or local polynomial) estimator of a
function m (x), with bandwidth h.

Assume (which we showed was true for nonparametric density and
nonparametric regression estimation) that
E [m̂h (X ) | X = x ] ≈ m (x) + h2B (x),
var [m̂h (X ) | X = x ] ≈ n−1h−1V (x)

Consider estimation of µ = E [g (X ,m (X ))], using
µ̂ = n−1 ∑n

i=0 g [Xi , m̂h (Xi )]

Start with a simpler case: µ = E [m (X )], using µ̂ = n−1 ∑n
i=0 m̂h (Xi ).
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Averages of nonparametric estimators:

µ = E [m (X )], µ̂ = n−1 ∑n
i=0 m̂h (Xi ) where

E [m̂h (X ) | X = x ] ≈ m (x) + h2B (x),

E (µ̂) = E

[
n−1

n

∑
i=0
m̂h (Xi )

]
= E [m̂h (X )] = E [E (m̂h (X ) | X )]

≈ µ+ E
[
h2B (X )

]
≈ µ+ h2B where B = E [B (X )]

So bias of µ̂, as in m̂h (X ), is of order h2. What about variance?

Lewbel (Institute) nonparametrics
a mini course, revised 2012

/ 57



For variance we have:

var (µ̂) = var

[
n−1

n

∑
i=0
m̂h (Xi )

]
≈ n−1var [m̂h (Xi )]

≈ n−1var [m (X ) + (m̂h (X )−m (X ))]
≈ n−1

(
σ2 + c2 + rh

)
where σ2 = var [m (X )], is like the variance of a true error term in a
regression, c2 is due to estimation error in m̂h (X ) relative to the true
m (X ), and rh is a remainder term that depends on the bandwidth h.
Note: derivation of formula for c2 involves U-statistic theory and influence
functions.

Key point: Unlike var [m̂h (X )] which was order n−1h−1,
have var (µ̂) is of order n−1. Averaging keeps bias but reduces variance.

Applying a Central Limit Theorem gives:

n1/2 [µ̂− µ− h2B
]
≈ N

(
0, σ2 + c2 + rh

)
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More generally, let µ = E [g (X ,m (X ))], µ̂ = n−1 ∑n
i=0 g [Xi , m̂h (Xi )].

n1/2 (µ̂− µ) = n−1/2
n

∑
i=0
g [Xi ,m (Xi )]− µ+ [m̂h (Xi )−m (Xi )]

∂gi
∂mi

+ r

For remainder r →p 0 needs h such that n−1/2 [m̂h (Xi )−m (Xi )]2 →p 0,
so n1/4+ε (m̂h (Xi )−m (Xi )) bounded in probability (i.e. a faster than
n1/4 rate of convergence). Recall had rate n2/5, so n1/4 is feasible.

Then above looks like a weighted average of m̂h (Xi ), so as before get

n1/2 [µ̂− µ− h2Bg
]
≈ N

(
0, σ2g + c

2
g + rn

)
for a remainder term rn. Averaging keeps bias but reduces variance.
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With µ = E [g (X ,m (X ))], µ̂ = n−1 ∑n
i=0 g [Xi , m̂h (Xi )]

If n1/2h2 → 0, 1/nh bounded, remainder terms → 0, then

n1/2 (µ̂− µ) ≈ N
(
0, σ2g + c

2
g

)
Where σ2g is variance of g (X ,m (X )), (ordinary averaging variance) and
c2g is variance from estimation error in m̂h.

Key feature of many semiparametric estimators: Focusing on the finite
parameters of interest, to get to faster than nonparametric rates of
convergence. Getting to root - n generally requires:
1. Averaging
2. Low bias and controlled variance (e.g., may require high order kernels
and undersmoothing - extra small bandwidth).

General diffi culty in many semiparametric estimators: appropriate selection
of bandwidth, smoothing parameters or nonparametric nuisance function
estimator.
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A Semiparametric Example: Index Model Estimators

Index Models: E (Y | X ) = g (X ′β) so Y = g (X ′β) + ε

Parametric: g () known, or parameterized as g (X ′β, θ)

Examples: linear regression g (X ′β) = X ′β, probit g (X ′β) = Φ (X ′β),
tobit, generalization of Box-Cox transformation.

If g is completely unknown then X ′β is only identified up to location and
scale.

If e.g., we replaced X ′β with X ′ β̃ = a+ X ′βb for any a, and any b > 0,
then get a new g where the model looks the same:
Y = g (X ′β) + ε = g̃

(
X ′ β̃

)
+ ε

A common feature of many semiparametric models is identification and
estimation only up to location and/or scale normalizations. β up to
location and scale gives marginal rates of substitution.
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Index Models: E (Y | X ) = g (X ′β) so Y = g (X ′β) + ε

Powell Stock Stoker (1989) weighted average derivatives:

Let m (X ) = E (Y | X ). ∂m(X )
∂X = ∂g (X ′β)

∂X ′β β

Let w (X ) = f (X )2 a weighting function chosen for technical convenience.

E
[
w (X ) ∂m(X )

∂X

]
= E

[
w (X ) ∂g (X ′β)

∂X ′β β
]
= κβ, (scalar κ) is β up to scale.

So let β̂ = 1
n ∑n

i=1
̂

w (Xi )
∂m(Xi )

∂X , can write as a function of kernel density
estimates.

Advantages: Weighted average derivative β̂ interpretable even if not an
index model.

Disadvantages: Requires high dimensional nuisance function estimation, all
elements of X must be continuous.
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Index Models: E (Y | X ) = g (X ′β) so Y = g (X ′β) + ε

Ichimura (1991): If we knew β, could estimate g by nonparametric
regression. If we knew g , could estimate β by nonlinear least squares.

For any β̃ define gβ̃ (s) = E
(
Y | X ′ β̃ = s

)
. Given any vector β̃, Let

ĝβ̃ (s) be the fitted value of a one dimensional kernel regression of Y on

S , where S = X ′ β̃.

Let β̂ = argminβ
1
n ∑n

i=1

[
Yi − ĝβ (X ′i β)

]2
Numerically can kernel estimate ĝ given a β̂, then least squares estimate β̂
given ĝ , and iterate to convergence.

Advantages: Uses a least squares criteria, can have some discrete X
elements, has only a one dimensional nonparametric component.

Disadvantages: Can be numerically unstable with multiple local minima.
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Index Models: E (Y | X ) = g (X ′β) so Y = g (X ′β) + ε

Maximum Rank Correlation (Han 1987, Sherman 1993):

Assume g () is monotonically increasing. If X ′i β > X
′
j β then

Pr (Yi > Yj ) > Pr (Yj > Yi ). Estimate β̂ to maximize how often
X ′i β− X ′j β has the same sign as Yi > Yj .

β̂ = argmaxβ ∑n
i=1 ∑i

j=1 1 (Yi > Yj ) 1
(
X ′i β− X ′j β

)
Advantages: No kernel or other nonparametric estimation needed (though
limiting distribution does need it). Can have some discrete X elements.

Disadvantages: Numerically diffi cult - nondifferentiable objective function,
can be unstable with multiple local maxima. Requires monotonic g .
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How to compare Semiparametric estimators? Three possible ways are:

1. Required assumptions (e.g., error properties, normalizations,
smoothness and boundary conditions).

2. Rates of convergence (pointwise or uniform).

3. If root-n, nearness to the Semiparametric Effi ciency Bound.
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Semiparametric Effi ciency Bounds (Chamberlain 1987):

Extension of the parametric model Cramer-Rao lower bound.

Let P be a semiparametric model that has a finite dimensional parameter
β.

Let Q be any parametric model (called a submodel) that is a special case
of a semiparametric model P.

Let VQ = var
(

β̂
)
when β̂ is effi ciently estimated based on model Q.

The semiparametric effi ciency bound V for β in P is the maximum VQ
over all possible submodels Q of P.
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Semiparametric Effi ciency Bounds (Chamberlain 1987):

Example: P could be the binary choice model Y = 1 (X ′β+ e > 0) with
unknown distribution e independent of X .

Q could be probit and in that case VQ would be the variance of β based
on probit maximum likelihood. Q could also be logit, or could be the
binary choice model with any parameterized distribution for e.

The semiparametric effi ciency bound V would be the largest VQ among all
models Y = 1 (X ′β+ e > 0) with the e distribution parameterized.

Semiparametric estimation can’t do better than the worst parametric
special case, since that worst case could be the true model. So a
semiparametric estimator β̂ with variance V is the best (most effi cient)
possible.

If can’t get root-n, then the effi ciency bound is infinite.
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Semiparametric Binary Choice Models

Y = 1 (X ′β+ e > 0). Instead of probit or logit where e is known to be
normal or logistic, suppose e distribution is unknown.
Scale is arbitrary. Location obtained by assuming e mean or median zero.
β gives marginal rates of substitution. Location needed for reservation
prices, e.g.

If only want choice probabilities, can just do nonparametric regression:
E (Y | X ) = Pr (Y = 1 | X ).

If we know e independent of X , for faster convergence rate can do linear
index estimation for β, and then do one dimensional nonparametric
regression E (Y | X ′β).

Specific binary choice semiparametric estimators either allow weaker
assumptions than e independent of X , or are more effi cient than using
general index model estimators for β.
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Binary Choice Models Y = 1 (X ′β+ e > 0):

Klein and Spady (1993), based on Cosslett (1983):

Assume e independent of X .

Like Ichimura, for any β̃ define gβ̃ (s) = E
(
Y | X ′ β̃ = s

)
. Given any

vector β̃, Let ĝβ̃ (s) be the fitted value of a one dimensional kernel

regression of Y on S , where S = X ′ β̃.

For true β, gβ (s) = E (Y | X ′β = s) = Pr (−e ≤ s) = F−e (s)

If we knew F−e , could do maximum likelihood. So instead do MLE using
the estimate ĝ :

Let β̂ = argmaxβ
1
n ∑n

i=1

[
Yi ln

(
ĝβ (X ′i β)

)
+ (1− Yi ) ln

(
1− ĝβ (X ′i β)

)]
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Y = 1 (X ′β+ e > 0) Klein and Spady (1993):

gβ̃ (s) = E
(
Y | X ′ β̃ = s

)
Let β̂ = argmaxβ

1
n ∑n

i=1

[
Yi ln

(
ĝβ (X ′i β)

)
+ (1− Yi ) ln

(
1− ĝβ (X ′i β)

)]
Advantages: Can have some discrete X elements. rate root-n convergence.
Attains the semiparametric effi ciency bound given independent errors.
Automatically get choice probability estimates ĝβ (X ′i β).

Disadvantages: Requires kernel and bandwidth choice. Can be numerically
unstable with multiple local minima, or ĝ outside of [0, 1]. Doesn’t permit
heteroskedasticity. Does not identify location (Given Klein-Spady
estimates, Lewbel 1997 provides an estimator for location based on
E (e) = 0, and gives moments of e).
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Binary Choice Models Y = 1 (X ′β+ e > 0):

Maximum Score Estimation (Manski 1975, 1985; Cavanaugh 1987):

Assume median (e | X ) = 0. If X ′i β > 0 then Pr (Yi = 1) > Pr (Yi = 0).

Estimate β̂ to maximize the number of correct predictions of Yi

β̂ = argmaxβ
1
n ∑n

i=1 (2Yi − 1) 1 (X ′i β > 0)

Advantages: No kernel or other nonparametric estimation needed. Can
have some discrete X elements. Can handle some heteroskedasticity.

Disadvantages: Numerically diffi cult - nondifferentiable objective function.
Converges at rate n1/3 to a wierd, nonnormal distribution. Only get choice
probabilities at the median, unless e ⊥ X . Large variance relative to Klein
and Spady (since more general error assumption)

Rate is not root-n even though there is averaging, because it is a local
average. Only data in the neighborhood of the median determine the
estimate.
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Examples: Binary Choice Models Y = 1 (X ′β+ e > 0):

Smoothed Maximum Score (Horowitz 1992):

Again assume median (e | X ) = 0.
Instead of β̂ = argmaxβ

1
n ∑n

i=1 (2Yi − 1) 1 (X ′i β > 0) do

β̂ = argmaxβ
1
n ∑n

i=1 (2Yi − 1)K (X ′i β/h)

where K is any smooth distribution function over the real line and h→ 0
is a bandwidth.

Advantages: Numerically easier than maximum score, and rate between
n1/3 and n1/2 (the smoother fe is, the more data we locally average). Can
have some discrete X elements. Can handle some heteroskedasticity.

Disadvantages: Slower than root-n. Can only recover choice probability
estimates if e ⊥ X . Requires choice of a bandwidth and a kernel type
function. Large variance relative to Klein and Spady (since more general
error assumption).
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Binary Choice Models Y = 1 (X ′β+ e > 0).

Lewbel (2000): Rewrite as Y = 1 (V + Z ′γ+ e > 0)
where V is an exogenous regressor with real line support.

Assume e is independent of V , conditional on Z , and E (eZ ) = 0. Let
fV (V | Z ) be the conditional density of V given Z .

Let

Ỹi =
Yi − 1 (Vi > 0)
f̂V (Vi | Zi )

Let γ̂ be an ordinary least squares linear regression of Ỹ on Z . Lewbel
(2000) shows γ̂→ γ.
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Lewbel (2000). Rewrite binary choice as Y = 1 (V + Z ′γ+ e > 0)

Ỹi =
Yi − 1 (Vi > 0)
f̂V (Vi | Zi )

, γ̂ =

[
n

∑
i=1

(
ZiZ ′i

)]−1 n

∑
i=1

(
Zi Ỹi

)
Advantages: Can have some discrete X elements. Estimates location
along with the other parameters. Allows for some heteroskedasticity
(var (e) can depend on Z , not V ). Given very thick tailed V , is rate
root-n and attains the semiparametric effi ciency bound given its error
assumptions. No numerical optimization required. Can be immediately
extended to handle endogenous regressors by instrumental variables.
Extends to binary choice fixed effects panels (Honore and Lewbel 2002).

Disadvantages: Requires kernel, bandwidth, high dimension f̂V . Requires a
’special’(exogenous, real line support, preferably thick tailed) regressor V .
Has large variance relative to Klein and Spady (since more general error
assumption). Finite sample bias numerically sensitive to V - empirically
best when var (V ) is large relative to variance of var (Z ′γ).
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How Lewbel (2000) works:

Have Y = 1 (V + Z ′γ+ e > 0) where V is an exogenous regressor with
real line support. Assume e is independent of V , conditional on Z , and
E (eZ ) = 0. fV (V | Z ) is the conditional density of V given Z .

Let S = − (Z ′γ+ e). Then γ = −E (ZZ ′)−1 E (ZS), so want to
estimate E (ZS). Now Y = 1 (S < V ) so E (Y | V ,Z ) =
Pr (Y = 1 | V ,Z ) = Pr (S < V | V ,Z ) = Pr (S < V | Z ) = FS (V | Z ).

E (ZS) = E [ZE (S | Z )] = E
[
Z
∫
S

∂Fs (S | Z )
∂S

dS
]

Change variables S to V :

E (ZS) = E
[
Z
∫
V

∂Fs (V | Z )
∂V

dV
]
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E (ZS) = E
[
Z
∫
V

∂Fs (V | Z )
∂V

dV
]

Now do integration by parts

E (ZS) = E
[
−Z

∫
[Fs (V | Z )− 1 (V > 0)] dV

]
= −E

[
Z
∫
[E (Y | V ,Z )− 1 (V > 0)] dV

]
= −E

[
Z
∫ E (Y | V ,Z )− 1 (V > 0)

fV (V | Z )
fV (V | Z ) dV

]
= −E

[
ZE
(
E (Y | V ,Z )− 1 (V > 0)

fV (V | Z )
| Z
)]

= −E
[
ZE
(
Ỹ | Z

)]
= −E

(
ZỸ
)

So γ = −E (ZZ ′)−1 E (ZS) = E (ZZ ′)−1 E
(
ZỸ
)
, which is what we

wanted because S = − (Z ′γ+ e).
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Semiparametric binary choice extensions:

Endogenous regressors: Control function estimators, "special regressor"
estimators. An overview of some of these is in “Simple Estimators for
Binary Choice Models with Endogenous Regressors,”by Dong and Lewbel.

Other extensions include:
semiparametric panel data binary choice models,
selection models
treatment models
ordered choice models
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Many, many other semiparametric models and estimators exist.

Some good references:

Engle, R.F. and D. L. McFadden (1994) "Handbook of Econometrics, vol.
IV," North-Holland., chapters:
36: "Large Sample Estimation and Hypothesis Testing," by Newey, W.K.,
and McFadden,
38: "Applied Nonparametric Methods," by Hardle, W. and Linton, O.
41: "Estimation of Semiparametric Models," by Powell, J.,

Nonparametric Econometrics by Adrian Pagan and Aman Ullah

Semiparametric Regression for the Applied Econometrician (Themes in
Modern Econometrics) by Adonis Yatchew.

Nonparametric Econometrics: Theory and Practice by Qi Li and Jeff
Racine.

Nonparametric and Semiparametric Models by Wolfgang Härdle, Marlene
Muller, Stefan Sperlich, and Axel Werwatz.

Lewbel (Institute) nonparametrics
a mini course, revised 2012

/ 57


